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PROBLEM OF PLANE STRAIN OF HARDENING
AND SOFTENING PLASTIC MATERTIALS

A. F. Revuzhenko and E, I. Shemyakin UDC 539.37

§1. Theclassical description of the kinematics of deformation of a solid medium is based on the assump-
tion of sufficient smoothness of the displacement field, The smoothness assumption allows us to introduce the
concept of a strain tensor and make use of the tool of differential equations for the description of the deforma-
tion of the material. However, there exist broad classes of motion of the medium where the displacement can
be connected with the appearance of a plastic strain. Experiments with various materials show that the mech-
anism of plastic strain is connected with localization of shear along certain surfaces {1, 2]. The latter signi-
fies that on these certain surfaces the displacement vector experiences a violent break, In the general case
this circumstance turns out to be important and must be taken into account when describing plastic deforma-
tion., Making certain assumptions which are justified from a mechanical viewpoint, we can describe a non-
smooth displacement field by fairly simple means with the aid of a collection of smooth functions.

As an illustration, we shall consider the case of a single function of a single variable. By F(x) we denote
the original function having a violent break at the points x;. We assume that the distances between the breaks
are small, that the function F(x) is sufficiently smooth between the break points, and that the values of the de-
rivatives of F(x) on the right and on the left of the break points are equal to one another; i.e., the function

P (2) for  zo i,
p(x)={F'(zi:t0) for z=uz

is sufficiently smooth.
Let f(x} be a smooth function satisfying the conditions f(x;) =F (x; +0) and P (z) = yp (z)dz. Then the

original function F(x) can be characterized by a pair of smooth functions f(x), P{x) and a sequence of break
points x; (Fig. 1). The function f(x) has the meaning of averaging the original function, and it characterizes
(with a certain accuracy) the values of F(x) over the entire domain of definition, The function P'(x) — f'(x)
characterizes the difference in local behavior of the original and the averaged functions, and for given break
points determines the magnitude of jumps of the original function, Thus, a jump of the function F(x) at the
point x; , , with an accuracy up to 1 equals { f'(x;) — P'(Xi)}li where [ =xy44 — xi is the distance between the
adjacent break points,

Analogously, we shall consider the case of a vector functionV=V,e,+V,e, of the vector argument r =
X{€q+ X9€y (€4, €4 is the orthonormed basis). Let I <1 be a characteristic dimension of the regions where the
function V{r) is sufficiently smooth, We shall call such regions elements., We assume that for the original
functions there exists a smooth average v(r) such that v(ri) =V (r;) at the centers of elements ri; on the bound-
ary separating elements with the centers at the points r;, rj, ; the break of V(r) with an accuracy up to Iri+1 -
ri]? equals A(r)(rj 44— ri), where A is a tensor of the second rank with smooth components Akm, k, m=1, 2. A
smooth vector field vi{r) and a tensor field A(r) are put in correspondence with the original field V(r). It can
be shown that the description thus introduced imposes the following constraint on the class of discontinuous
functions: Onthe break lines the values of one-sided derivatives 0V, /<9xm must be equal to one ancther. It
is obvious that
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Ahm = avk/axm - 6Vh/axm, . (1-1)

where the functions 8Vk/8xm on the break lines are predetermined by their one-sided values,

Thus, certain classes of nonsmooth functions can be described by collections of smooth functions, one of
which has the meaning of averaging the original function, while the rest characterize the breaks of the origi-
nal function. As applied to the displacement field, such a description signifies that together with the smooth
(averaged) field of displacements, new kinematic variables, which provide information about the breaks lost
in the averaging process, are introduced.

The additional kinematic variables (on the basis of various hypotheses) have been introduced in many
investigations (for example, in [3}); deformation of solids with a nonsmooth velocity field has directly heen
investigated in [4].

We consider an example of describing a discontinuous displacement field by means of smooth tensor
and vector fields., We assume that the break lines are straight, orthogonal, and parallel to the coordinate
axes. By x! and x-]z we denote the coordinates of intersection of the break lines with the corresponding axes.
Let the smooth description of the field V(r) have the form

v = 8%y, Uy =0,

(1.2)
A11= 0’ A22= 01 Al‘.’. = § — Sey A21 = 0'

where the coefficients s and s, depend only on the loading parameter. We consider the mechanical signifi-
cance of the flow (1.2). First of all, from (1,2) it follows that the components of the displacement vector nor-
mal to the break lines are continuous: Ayy=08vy/0xy —~ 8V/0x,=0 and Ay =0v,/0xy — 8V,/3x,=0. The breaks
of the shear components of the displacement vector on the lines xy =x% and x, =x£ equal

il
V=4pn——5—=0,
A — A — o
Vo= A= 8= 8)

From (1.2) it also follows that 9V/0xy =— Ay +8v,/0x, =5, and 8V,/0xy == Ay +8vy/dx( =0,

Thus, the description (1.2) and the data on x} and x% allow us to restore the discontinuous displacement
field and the flow pattern: (1.2) represents a plane-parallel flow under the conditions where the breaks of the
shear components of the displacement take place only along the family of lines x, =const (Fig, 2a).

I
v, = 8%s, U, = 0, {1.3)
Au = 01 A'zz = 01 Alz = 0# A21 =8 S
then
. : LH it LA+ it
W=0 = An——g— =~ s) "5,

i.e., Egs. (1.3) define a plane-parallel flow under the conditions where discontinuities of the tangential com-
ponent of the displacement occur only along the lines x; = const (Fig. 2b).

We shall call the break lines of the displacement vector slip lines, while the breaks of the tangent to
the slip line of a component of the displacement vector will be called a slip or localized shear strain,

§2. We shall consider plane strain of a plastic medium. As was mentioned, plastic strains are connected
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with localization of shear along certain lines (slip lines). It is natural to expect that this fact must be reflect-
ed in the corresponding plasticity equations., However, from the classical equations only the equations of
ideal plasticity single out special directions (the directions of the characteristics of velocity and stress
fields), which can be interpreted as a reflection of the shear mechanism of deformation along the slip lines,
The equations of hardening plasticity are of the elliptic type, and they do not single out special directions in
the development of the strain [5].

In [6] a method concerning the construction of models of media with an arbitrary rheological behavior,
the mechanism of deformation of these media having a shear character along certain directions, was con-
sidered. Below we shall consider a realization of [6] for rigid-plastic and elastoplastic media with a diagram
which can have rising and falling branches, ' B

We assume that for certain external loads the region being deformed goes as a whole into a plastic state,
the plasticity condition does not depend on the first invariant of the stress tensor, and the slip lines are or-
thogonal, By A; and A, we denote the parameters of the slip lines. Then

8z _ L o &) oz
a";;—‘g(e 4)611’ ax,‘tg(e'*' 4)07.,’

al; _ol, day 90 daq 20

“=Fy BTHy BT Dy T Ay
where x; and x, are the Cartesian coordinates; 6 — n/4isthe angle between the tangent to the line Ay and the
Ox, axis; and {4 and 1, are the lengths of arcs along the corresponding lines.

Let the deformation history of the material be known. Then the angle 8 =6 (x, x,) is equal to the angle
between the direction of the maximum principal stress andthe Ox; axis at the instant when the maximum
shear stresses at the point (xy, X,) reach a certain known magnitude k. To determine the angle § and, conse-
quently, the orientation of the grid of slip lines, we must solve the elastoplastic problem in the general case.
In particular, if the material has a well-developed yield platform, then the orientation of the grid can be deter-
mined by methods of the theory of ideal plasticity [7]. In certain cases the orientation can be determined from
symmetry conditions, diverse variational considerations, and so forth, We shall assume the angle 6 to be
known over the entire region of plastic deformation, '

The second parameter characterizing the grid of slip lines is provided by the dimensions of the ele~
ments. We choose the two coordinate lines A,, A; =const, which will be divided into elemental segments:

AN = fi(M)e, Ak = fr(Ao)e. @.1
Equations (2.1) determine the partition of the entire plastic region into elements; the lengths of the sides of
the element at the point (A(, A,) equal
ll = fl(xl)al(kl’ }‘“1)87 (2.2)
Iy = fy(Ao)as(Ay, 342}5-

Hence, in particular, it follows that the partition of the entire plastic region into correct elements is possible
only for the condition (0% 9A;9\,) 1n (ay/a,) =0. In the general case such a partition is not possible,

Data on the physics of solids and experiments show that the plasticity limit of elements isolated by the
grid of slip lines is much higher than the plasticity limit of the macrobody. If the macrobody is transformed
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into the plastic state for maximum shear stresses equal to k, then the elements are transformed into the plas-
tic state for maximuom shear stresses k(I), where k(1) >k, We confine ourselves to such loading paths for
which the shear siresses within the elements do not exceed k(l). The larger the ratio k{I)/k, the broader the
class of such loading paths.,

The plasticity limit of an element depends on its dimension I, Therefore, we can assume that the
stresses acting on the element determine its dimension; i.e., the denseness of the grid is determined by the
stress field., The problems of fracturing of the elements, which can take place during hardening of the ma-
terial, as well as development of slip lines from regions with the highest stress into regions with lower
stresses, are not investigated in this work. We shall consider the deformation of the material after the for-
mation of a grid of slip lines, where the functions fy& and f,£, characterizing the denseness of the grid, are
assumed to be known.

We assume that under shear no variation of the density (dilatation) of the material takes place and that
the four components of the tensor A from (1.1) are determined only by two invariant functions T and Q:

Ay =cos20-T, 4,, = —cos 20.T,

(2.3)
Ay = —Q +sin 20.T, 4,, = Q + sin 28-T.

Conditions (2.3) signify that the components (normal to the sides of the elements) of the nonaveraged displace-
ment field are continuous. The mechanical significance of the displacements follows from the equation
1 1 {av, &V 1 (ov, ov
Q= (o) = (G — 52— (B - ).

i.e., the variable Q characterizes the different rots (rot = curl) of the original and the averaged displacement
fields. Together with the variable @, we shall use the variable w:

{ fov, & 1 oV, av
=Q L (=2 )2t T
L 0=+ 5 (tnl 612) 2 (axl 6z2>’

which has the meaning of half the rot of the original nonsmooth displacement field.

In the example (1.2): !/, rot v=—s/2, @ =(s = 5,)/2, and w==5,/2. In the example (1.3): !/, rot v=-s/2,
Q=—(s—80)/2, w=—5+ (5¢/2).

We shall show that the constraints on the class of discontinuous functions imposed by the description
(1.1) are completely acceptable from a mechanical viewpoint, -Indeed, on the break lines of displacements
the shear and normal components of the stress tensor are continuous. We assume that all components are
continuous. The derivatives avk/axm determine the deformation and rotation of an element under the action
of the stresses, Let the strain of the element be connected with the stresses by Hooke's law, Then continuity
of the elastic strains follows from continuity of the stresses, (If on certain lines the stresses are discontinu-
ous, then the analysis can be carried out by the usual methods.) Continuity of the rotations can be shown from
the continuity conditions of the components of the displacement vector normal to the sides of the elements.
Hence we have the continuity (equality of the one~sided values) of each of the derivatives 8V 8xm=8vk/8xm,
Agm. It is obvious that for the components of the tensor of elastic strains (1/2)(8Vk/ me+8Vm/8 x e e, =
(1/2) (@ vy fox +3v  /ox) ~ Alm ~ Amkleken, the compatibility condition in the general case is not fulfilled and
must not be fulfilled. Indeed, if from a smooth stress field we construct the field of elastic strains, then, in
spite of the smoothness of the latter, there will be no compatibility, since the stresses in the general case do
not satisfy the Beltrami—Mitchell equations. On the other hand, for the components of the tensor of total
strains (1/2)(8vy/0x, +8 vy, /9xy)ege,, the "otal" displacements vy and v, (a smooth field of averaged dis-
placements) do exist, and therefore the compatibility condition is fulfilled for the total strains,

L

The problem of "compatibility" connected with variability of the curvature of slip lines is more compli-
cated. It will be shown below that the mechanism of deformation adopted coincides with the mechanism of de~
formation of an ideally plastic material, which can be introduced as an interpretation of an associated flow
law (the Geiringer relations). Therefore, just as for an ideally plastic material, "compatibility” connected
with variability of the curvature of slip lines will be fulfilled only for sufficiently small (localized) strains.
We shall confine ourselves only to such strains.

§3. We shall consider the case where the elastic strains of the elements can be neglected. From the
stiffness condition of the elements and the continuity condition of the components of the displacement vector
normal fo the sides of the elements we have the equations
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17} a6 a
‘é:;—:"wzm=0v w2+w151 =10, (3.1)

where wy and w, are the projections of the displacement vector onto the normals to the slip lines A, and A,.

We calculate the magnitude of the jump of the displacement component tangent to the side of the element,

By Vp and v, we denote the projections of the original and the averaged displacement vectors onto the n direc-~
tion (Fig. 3). Then

In  Vn _cos20(ov,  dv,\ , sin20{ov, , av,
om om — 2 \dz, 0=, T2 5—:71+0z2 +
+ _1_(.91;2 . dvl) cos ze(avl avz) sin20 {9V, | av,\ 1 («gy_q _ g_v_) (3.2)
2 \oxy 9z, 2 \dz, dxy 2 dzy ' Oxy 27 \ox, 9z,

From (2.3), (3.2), and the stiffness condition of the element it follows that the magnitude of the jump is

. (% avn
Yo =\ Tm — m fag = —Q) fiae =
__ [eos28{av, av,) sin20 {dv, , ar,
—{ 3 (621 7z T2 (a—x,'{'a_z.;—gflalsz

1 dwy | w, 08
('11 o + m) faase.

Analogously, for the other side of the element

2 v
vy = (52— 52) fate = 0+ ) e =

cos 20 { dv, v, 'sin 20 v, | évy
— 4+ ===+ 2}+Q —
{ 2 (a.z-1 r, 2 \dz, ' or, 2 fa05

1 a r, 90 .
-{Z%_%m+@m& (3.4)

The values of the jumps explicity depend on the distances between the slip lines, The expressions (3.3) and
(3.4) determine the localized shear strain (slip). In contrast to shear determined by the strain tensor and
characterizing the variation of arbitrarily oriented angles, the quantities 7?2 and ygi have a meaning only on
the corresponding slip lines and characterize actual shear (the slip having the dimension of length) of the ele-
ments along these planes.

The shear stresses which can develop on the slip planes are determined by the magnitude of localized
strain on these planes, i.e.,

ol =T (v) =T (v}) (3.5)
or
% = S (0%): 3= S (%) (3.8)
Here and in the following the index 0 marks variables referred to the corresponding slip planes.

In the formal role of the measure of shear on a slip plane we can take any quantity by which the values
v, and y$; can be restored (for example, the dimensionless quantity 7y J/fjai€ ,ete). The criterion of the
choice of the measure is provided by relations of the type (3.5): Forthe measure of shear we must take a
quantity which can be used in the defining equations. In all equations being considered, we have taken the
breaks of displacements vJ, and yJ; which themselves have the dimensions of length as the measure of shear.
If, however, for a certain material there occurs a possibility of using a dimensionless measure of plastic
shear, then all the necessary calculations must be carried out analogously.

Equations (3.3) and (3.4) show that localized strains on slip planes of different families can be different
even for Iy =1l,. We write the condition of functioning of families of slip lines in the form

byv), + b,¥9, = 0. (3.7

If one of the coefficients by or b, is zero, then only one of the families of slip lines functions; if by +b, =0, then
both families function identically, and so forth. The problem of choosing the coefficients will be considered
below.
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Fig. 3
Equations (3.1), (3.5), and (3.7), in combination with the equations of equilibrium, form a closed system
relative to ofy, 03, ady, 03y, Wy, wy, and wr
9 -8 9 0 0 98 o 40 -0
, 201 +- 7, 11021 ~— 01 5 — 4402 5 + a,a,X1 =0,

2 g

d 0 a 0 0 90 0 98 0
3, @012+ g 01022+ 2.01 - + 450 a, Tt a,a,X> =0,

dw,y 80 Gw,y 86
e = 0 ) +wg =0,

(3.8)

16, a% + fzbz 67» !+ f1blw1 Wy fzbzwz o + (0851, — brasfr) 0 = 0,

where X{’ and X are the projections of the vector of body force onto the tangents to the slip lines A4 and A,.

The relations (3.5) show that cases in which of, #0J; are possible. This signifies that for the main-

tenance of equilibrium on the sides of the elements distributed moments must make their appearance (body
moments are assumed to be absent), From the equlhbrmm conditions we have the equatlon for the moments:

‘”w a..u“ + o alp,,,, + a,a, (0}, — 03,) = 0. {3.9)

The system (3.8), (3.9) is closed relative to all varlables except uf; and pdy. The indeterminacy of the mo-
ments is connected with the stiffness of the elements, and in each particular problem it is either eliminated
by additional considerations or is retained. In the Cartesian ¢oordinates the system (3.8), (3. 9) is transformed
to the form

aall+6u,1+xl_0 6613+6023+X2=0

o5,
sin 20 (g—i—i gZ—z) — ¢0s 20 (av2 + g::) + (gi‘x -+ g;’) 0, _ .
— sin 2032 — 2%) + cos 20(22 4 %) 4 (22 +2) =0,
S’-f—f‘z'—"u cos 20 + 212 vl gin 9 D%z _ p ({“"‘”——239(% - ;’Zz) 802 (g:j + 32 ) sz] a,fla), (3.10)

2 Q11— %1 5 20 + =2 % + 0“ sin 20 4 —--——-—. L Y ([wszze(avl g::) + Su; 2 (6% -+ -‘Zﬁ) 4 Q] a-zfae),

oxy ax, ' 9z,
cos 20 (i”_l - i"-ﬂ) + sin 29(3’;-’ + """1) L 2AQ =0,

%‘;‘; i ap“ + (633 —0y) =0

where we have introduced the usual notation and A =(bya,fy — byfjay)/(byayfy + byfya;). System (3.10) is of the
hyperbolic type, Slight discontinuities of the displacements vy and v, are possible only on the slip lines Ay and
Az. At the same time, if a weak discontinuity is realized, then in the general case it gives rise to an intense
discontinuity of the stresses. From the equations of ethbrlum and (3.5) it follows that intense discontinu-
ities of the stresses under conditions where the field of displacements v, and v, is smooth are possible only
on the slip lines A; and A,.
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The third and fourth equations of system (3.10) show that the plastic potential

0 4 40
03+ o

—C Oyg+0py . e
d’(dkm, 9) = 3 = -4 5 22 00829—{-1—23—2-5111 20’
e = 1 _ 3 0 Oy _; 00
tu=gr =Ag En=gl=Ag-, (3.11)
1 (o0, , v oD F% )
e =8n = (az, + ax,) Mo =M aon

exists for the strains. Since for the loading paths considered the angle 8 depends only on the coordinates,
(3.11) can easily be transformed into relations for the strain rates,

The last equations of the system (3.1]) can be regarded as relations determining the loading surface:

l‘Pl(omm ) — lTl(M2 - Q)anflel = (D,(o,.,... Exmy T1» Ty, 6) =0,
103 (0nm: O] — ITI(M2 + Qasfiz]] = De(Opms Erms 1. 72, 8) = 0, _ (.12)
@1 =02, (0rm: 8); @2 = 0}, (O B);

where

0 0
. Y13 ¥ A
A =cos26(eu—e,,)+2sm268,,=ha%+,:72:8; Q= —gz-
The loading surface in the general case is singular and consists of the two surfaces & and &: The region
$ < 0, & <0 corresponds to the rigid state of the material, while the region &, & =0 corresponds to the plastic
state. The form of the expression (3.12) is chosen with account taken of the fact that the function (functional)
T is odd.

The concepts of loading and unloading are defined in the space of strains: Loadingtakesplace if at
least one of the quantities v{, or v3; varies, If both quantities are fixed, then unloading or neutral loading
takes place: unloading if ‘3‘%’1&' doy,, <0, and neutral loading if %!%‘I doy, =0, where i =1 or 2.

Rm A m

Thus, Eqs. (3.10) show the following: In the general case, as a result of plastic deformation, the ma-
terial becomes anisotropic and inhomogeneous; the form of anisotropy is connected with the orientation of
the grid of slip lines, while inhomogeneity is connected with the denseness of this grid; a potential exists for
the tensor of plastic strain; the loading surface is singular; and the deformation law is nonassociative. In par-
ticular cases, we can have situations where the loading surface is smooth, the deformation law is associative,
and the material is homogeneous. If T'=0, then Eqs. (3.10) are transformed into the equations of ideal plas-
ticity. The model of ideal plasticity, which can be considered as a limit case of (3,10}, possesses a number
of exceptional properties: In spite of the possible inhomogeneity of the material, connected with the geometry
and denseness of the grid of slip lines, the deformation equations do not depend on this inhomogeneity, nor do
they depend on the possible difference in the functioning of slip lines belonging to different families; the stress
tensor is symmetric even in the case of unequal localized shear strains (slippage) on planes belonging to dif-
ferent families,

We shall consider the problem of indentation of a smooth rigid die into a weightless half-space of plastic
material with a yield platform. We assume that in the case of an ideal flow a plastic Hill zone develops in
the material (Fig. 4): 6= in the region AjA,A,, 8 =8 +7/4 in the region AjAjAg, and 6 = 7/2 in the region
AjA,A;, where rand Barepolar coordinates with a pole at the point Az (the flow is symmetrical about the
straight line x,=—a).

We shall construct the solution of the system (3.10) for these values of § and the following boundary
conditions: Onthe boundary with the rigid region the normal displacement component is continuous, on the
boundary A;A, the shear stresses are absent and the vertical displacement is h, the boundary AgzA, is free
from stresses, and on the lines A,A; and A A; the corresponding displacements, stresses, and moments are
continuous. We introduce the curvilinear coordinates A and A, (see Fig. 4). It can be shown that 0 =T(0) =k

in the region AjA,A; while op, =T (E—:ﬁi‘bﬁif—h) in the region A,A;A;. From the condition of continuity of
s .

the stresses on AjA, it follows that

412



r(p i VI )~ k. (3.13)

bofgr —bafy 1)

The last equation allows us to solve the problem of functioning of slip lines belongmg to different families
[i.e., to determine the coefficients by and b, in Eq. (3 7). If the flow is ideal [T(yJ,) =kl, then condition (3.13)
does not impose any constraints on by and bs. I T(v3;) =const, then from (3.13) it follows that b;=0. Cense-
quently, the continuity condition (3.13) shows that in the case of an ideal flow (hardening or softening) localized
shear is possible only along the family of lines A,, Thus, in the given case the loading conditions uniquely de-
termine the mode of deformation,

A solution satisfying the boundary conditions enumerated above has the following form:
in the region AsAgzA

vy =h, v, = ~h, © =0, {3.14)
0y = —2k, Oy == 01y = 0y = 0, 3 = py =05

in the region AjA As: vy =0, vg = V2h, w =—+2h/r,
/ ‘ ry
o =1 (Y2 ). op =k, ory = (p— ) [T{EE o) 4 k] — .

o= — |2 ,T(v;zhflg)+k]<g_%)._ "
)

in the region AjA,As: vy =h, v, =h, w=0, y =0, py, =0,
ollzkf-—f;‘[‘lf(——n—"r‘“fz“‘ )—Hf( “2*“)]

V2
X 1 [— 2y — 15 = a\ | [ — +z~
i e
O |

where

¥ == F T )] 4 4

When integrating the equations it was additionally assumed that o rr @0d ppp have no singularity at the
pointr=0and auﬁp/ 88 = 0. The indentation condition and the diagram of stresses under the die, dependent on
the depth h, are given by the expression

Oas fsamo = — k 4+ ¥ ((— 2, + a) [1'2). - (3.15)

In the particular case of an ideally plastic material the solution and the limit load (3.15) are transformed
into the classic equivalents,

In the formulation being considered the problem is posed as a problem of initial plastic flow, i.e., h in
the solution (3.14) must be small. Since in a centralized wave a,=r, then as r—0 the dimensions of the ele-
ments along A, become vanishingly small. We assume that along A; the dimensions are also small, i.e., fie ~
r if r~0. Then the localized shear at the point r =0 has no singularity, and for a sufficiently small h the flow
of the entire material will be ideal. By Y, We denote the value of shear for which hardening or softemng be~-
gins., Let the ratio y,/a be so small that the flow for h on the order % can be assumed to be a starting flow.
For these values of h yet another circumstance connected with the special state of the layer of material ad-
joining the line separating the rigid and plastic regions arises.

From the solution it follows that on the line AjA,A;A, the shear component of the displacement vector is
discontinuous and the break is equal to V2h. In connection with the fact that we have taken quantities having
the dimension of length as the measure of localized shear in (3.5), the "shear" along the line AjALAGA,, in
principle, does not differ in any respect from the localized shear within the region of deformation. Therefore,
on the boundary with the rigid region there emerges an additional boundary condition on the stresses:

ofs = T(V2h). (3.16)
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Fig. 4

Since the distances between slip lines are finite, the additional condition (3.16) does not contradict the
solution constructed, Indeed, the stresses (3.14) have significance only up to the line A"jA",A":A",. Therefore,
the "boundary layer™ AjA,A;A A" A'A" A, on the one hand, is under the effect of the shear stresses (3.14),
while, on the other hand, it is under the effect of the shear stresses (3.16). This leads to the fact that the
stress 022 is discontinuous on the line A} A%A'A';, while in the "boundary" layer it will vary rapidly along
A;. From the conditions of equilibrium of the elements forming the layer AjA,A A A" A A'AY we find

_ Var
- p(Y2r ) ._’(Vzh)—T( LI V) IPYRER '3 F: ) — &
SUPEES. [T( 2k o) + k L aVE |- 2k =BT (20 4]
We note that T(0) =k, and not equal to k, as was assumed above, If T(0) <k, then unloading can take place in
regions where 7‘1’2 =0, 'yg = 0, This variant can be investigated analogously to that considered above,

§4. Weproceedto the model of an elastoplastic body. We assume that the deformation of the elements
is completely reversible, while all localized deformation (slip) is irreversible. We shall first consider the
problem of elastic strains of elements under the stresses ‘710<m~ The normal stresses O’f{k give rise to an ex-
tension of the element in the direction of its action and a compression in the lateral direction. From the con-
dition of continuity of the components of the displacement vector normal to the sides of the element it follows
that the compression strains coincide for the original smooth and the averaged smooth displacement fields.
Consequently,

10w, _ w980 1—v o4 Vv
T T i T 7 T

i ow, wy 00 _1—vao

(4.1)
L w09 11—V V40
a, A, ay kg T2 22 2p 1

where p is the shear modulus and v is Poisson's ratio. Just as for the rigid-plastic body, we can show that

the shear stresses oj, and o), in the general case are not equal to one another. The action of the stresses

o), and o}, is represented as a superposition of the two systems of stresses 7§ and 70: of,=r5+72 and 03, =

8- 19, From the symmetry considerations it follows that the elastic shear of the element takes place only

under the effect of the component 7% =(c{, +59;)/2. The value of the elastic shear is

.0 0
cos20 (9Vy _ 9V, sin20 oV, | ovy) izt O 4.2)
2 \0xy Oz, 2 \ozy T 9z, ) T 4

We consider the equations for localized strain. By definition, localized shear on a slip plane equals

g, oV coe20 (v, dv,} . sin28(dv, au) ]
0 —|[r.___ 1 = =2 —L =8 -0 —
Ve = (am am ) hase [[ 2 \dz, 012,) T T3 \4z, | or, Q

FIN E

The relations (3.6), reflecting the connection between localized shear and the corresponding shear stress, re-
main unaltered. Substituting (4.2) into (4.3) and then into (3.6), we obtain the equation

in 2 1 o9y + a2
cosze(aul @_,)+s|n20(a_:z_,+z_2)_gzm__les(o?2)+ 124p 1, (4.4)

2 bz, 0z, 3z,
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Analogously, for th_e other slip plane

0 L 0
c0820 [dv,  dGv,\ , sin20(dv, __&) o 0 O3+ 035
2 (%_i o ET;) +3 2 (51—1 ' dxy +e= fz”aﬁs (021) + 4y (4.5)
In an elastoplastic body the elements deform both under the effect of the stresses O'&m and under the effect of
moments... The last circumstance allows us.to close the system relative to all variables, including the mo-
ments, .

From the above.mechanism of deformation it follows that the forces between the elements are trans-
‘mitted via the stresses distributed over their sides.: Therefore, the moments p{; and pd; can arise only as a
result of nonuniformity of such a distribution. In the given case the stress distribution over the side of the
element can acceptably be assumed to be linear. The linear diagram is represented as a superposition of
two diagrams: a constant one, which gives the same force along the side of the element as the original dia-
gram but does not give any moment, and a linear one, which as a sum does not give any force but does give a
rr;oment. We denote the maximum stress on the side A, of the element corresponding to the second diagram by
Zj;. Then

p?l = E?,agzelﬁ.
Analogously, for the side Ay

0,
K, = " aifse-

The nonuniform stresses acting on the side A, of the element cause not only an extension of the element,
which is taken info account by the first equation of (4.1), but also a rotation of this side through an angle Q?i.
By means of the usual relation we can coennect the variation of Q{; along A; (2}, is smooth along A;) with g

1 09  12p}
71-1_ Ay Efayfye)?’

(4.6)

where E is Young's modulus.
Analogously, along A,

1693, 12p5,
= By (*.0
If we follow the ideas of the moment theory of elasticity, then we have to put 2J; =QJ, [8] (in the given

case it is unimportant whether the variable Qf, =S2§2 is independent or is determined, as in [8], by the rot of
the displacement field) and obtain the closing equation for the moments by cross differentiation of (4.6) and
(4.7). However, the mechanism of deformation adopted above leads to the necessity of additionally introducing
three kinematic variables at the point A, Ay: ©, @};, and QJ,. At the same time, a priori we have no justifica-
tion for the assumption that the variables 2}, and 2%, are connected with one another and with the variable .
Therefore, the two equations (4.6) and (4.7) introduce the two new unknowns 2J; and QJ, into the system of equa-
tions and do not allow us to directly close the system relative to the moments,

The closing equations can be obtained in the following manner, By W we denote the part of the elastic
energy which is stored in the region D of the elastoplastic body as result of deformation of elements under
effect of the moments pf; and pf,. It can be shown that

a 0\2 f N2
W— %\ [M 4 () ]alaﬁdixldkz- “.8)

% ("2fzf)2 C{agjye)?

We assume that out of all possible moment distributions satisfying the equations of equilibrium and
boundary conditions the one that.makes the potential energy W:-a minimum-is realized, The minimum of the
functional «(4.8) under. the: condition (3.9). is-realized if the moments satisfy the equation

a 2,13, o ey

Fhy (@f18)* Ry (agfpe)® (4.9)
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In all cases considered above the functions l; and I, from (2.2) can be interpreted as nonhomogeneous
characteristics of the material having the dimension of length. If the grid of slip lines is regular and consists
of straight lines (iy =1, =1), then the nonhomogeneous characteristics reduce to a single constant which is con-
tained in the equations as a material constant having the dimension of length. The constant of the moment
theory of elasticity (with accuracy up to an unimportant multiplier which is introduced for the sake of conven-
ience) coincides with [, the parameter of denseness of the grid of slip lines. In this case Eq. (4.9) is trans-
formed into the corresponding equation:of the moment theory of elasticity: 9 ty/0x, =91 5/0x4 [8].

The equations of equilibrium together with Eqs. (4.1), (4.4) — (4.7), and {4.9) form a closed system rela-
tive to

0 0 0 0 0 0 0
Gy, U_'S, Gg, Gz, Wy, Wa Q, Qup, Qua, W1, Noze

In Cartesian coordinates the system is transformed into

’mzl 1 9013 . 0 032

00'" .
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(For the sake of brevity of representation, the equations for the moments in Cartesian coordinates are not
written out.,)

Let o), <k and o, <k. Consequently, there is no localized strain and S( ofy) =S(63;)=0, 2 =0. In this
case the angle 0 is eliminated from the system (4.10) and the system reduces to the equations of the theory of
elasticity. Hence an elastic medium can be defined as a medium in which the condition of continuity of the
normal component of displacement (4.1) is fulfilled for all possible directions of A; and A,.

We write the system (4,10} in terms of increments:
oAcru . 940y aAo., =0 dAoy, | 0ATy, =0

o, r, 0 dxy | dxy
sin 29(‘“”l ‘ZA_“?) s 20 (‘M”’ 4+ ‘%Axﬂ)— - (Ac11 — AG,,) 5in 20 — (AGy, -+ Ady,) cos 261;
9Av; | 0An, 1—2v Ac Ao,
gz, i din ( 1t ~1 ) (4.11)
cos 20 (aAL‘ %i’ 2) - 8in 20 ((m' 2 - ri,tv‘) = 0, (804 — AGy,) - py [(Ay — Ad,,) cos 20 + (Ao'l-» -+ Aoy,) sin 20},
Ly . 2

9AQ = p, [(AGy; — Ady) €08 20 -+ (A, + Adyy) sin 261+ (pl - ) (A, — Adyy),

cos 29(“”1‘—"’“2) - sin 29(’”"». "—A—‘) L 9AAQ = 0.
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We consider the problem of the coefficients by and b, which figure in Egs. (3.7), i.e., the problem of func-
tioning of slip lines from different families. Let (A;, Aj) be the coordinates of a certain initial element, while
(Af + A\, Ag)y (AN, Ay + AN), and (A +AA{, Ay +AN,) are the coordinates of the elements bordering on the initial
elements. The compatibility conditions of strain of the elements (A, Ay), (A{+ANy, Ay}, and (A4, Ay +ANy) lead to
Egs. (3.1) or (4.1), At the same time, the condition of compatibility of strain of the elements (A4, Ay} and Ay +
Aly, Ay +AXy) must be satisfied, which leads to the fact that at any specified moment of time t, by {t)b,(t) =0,
i.e., in the medium being considered only alternating functioning of slip lines from different families (turbulent
plastic flow [9)) is possible, Therefore, the increments of all sought variables consist of two parts: one part
(with the index "~") satisfies Eqs. (4.11) (in which we have put by =0), while the other (with the index "+") sat-
isfies the same equations but with b, =0, Since both systems are linear, by adding the corresponding equations
relative to increments with the indices "+" and "™" we obtain as the sum the same system (4,11}, in which A =
(A=) ~(A+2)][(A~Q)+ (A+Q)]. Hereitisnecessary to take into account the fact that 8'(od,), 8'(08,), and, con-
sequently, py, p, depend on the sign of the increments Acf, and Adj;.

If the quantity A is known (for example, from the symmetry conditions A =0 or from the boundary condi~
tions, as in the problem of the die, A =1, and so forth), then we can at once solve the system for the increments
with the index "+" or "—", Here the question arises as to during which time intervals the boundary conditions
are satisfied as a result of slip along one family and as a result of slip along the other family, In each prob-
lem this question is resolved from additional considerations, taking into account the actual loading conditions
of the material,

We consider the problem concerned with the type of the system (4.11). From the last five equations we
express Acy . in terms of Avy and Avy, Then, substituting the expressions for A0y, into the equations of equil-
ibrium, we obtain two quasilinear equations of the second order relative to Avy and Av,, By ® we denote the
tangent of the angle of inclination of the characteristic to the Ox, axis in the local coordinates 0 =7/4, Then

N 1/—(1—%1) £V (=g — (-2 (8~ 8)

(1 —v) (& + o) ’

(4.12)

where

§1=_1_91+92/A~1/4u.
2 pf —pF—pildp’

E, = A e/Atpy
* 2 pf—pf —pylhp
The type of the system (4.11) is determined by the signs of the expressions under the square root sign
in relation (4.12).

The expression (4.12) shows that the type of the system (4.11) depends onvt.he derivatives of the functions
S. We consider the mechanical significance of this relation when o), =0J,. Here we have the conditions

11
Gi=gpp B=0, A=— 4.13)

m

'oi'o
& 1S

The relation (4.12) {with (4.13) taken into account] shows that the system (4.11) is of elliptic type in the
case where the material hardens (£, > 0), and is of hyperbolic type in the case of an ideal flow of the material
(¢;=0). Ifthe material softens and its softening is not too intense [—1/(1 — 2v) <, < 0], then the system also
is of hyperbolic type. If, however, the softening of the material becomes sufficiently intense[~— oo < & < — U/
{1 — 2v)], then the type of the system changes to elliptic.

This result, which is paradoxical at first glance, can be clarified using the following example. Let the
strip AAyA;A, be stretched in the x; direction (Fig. 5). We assume that on the boundary and within the region

of deformation 04y =0y =09y, =0and §=0. From Egs. (4.11) we can find the connection of the increment in the
length of the strip with the tensile stresses:

Avy
Acu-

=g+ -2y 2. (4.14)
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If the material hardens, then the signs of Avy and Aoy are the same, i.e., an increase or decrease in the ten-
sile force leads to an increase or decrease in the length of the strip. Now let the increase in the localized
shear on the slip plane lead to a decrease in the shear stresses: the material softens. On the one hand, the
increase in the localized shear leads to an increase in the length of the strip. On the other hand, the decrease
in the shear stresses leads to elastic unloading of the elements, which gives rise to a decrease in the length
of the strip. ' o

For £ >—1/(1 — 2v) the first factor prevails over the second, and for a decreasing external load an over-
all elongation of the strip takes place: The system (4.11) is of hyperbolic type. If, however, £ <—1/(1 = 2v),
then the second factor will be the dominant one: Fora decreasing tensile force and increasing localized shear
the overall length of the strip will decrease as a result of the elastic cbmpression of the elements, i.e,, in
outward appearance the material behaves as a hardening material, and the type of the system is changed to
elliptical, If £;=—1/(1 — 2v), then the tensile force decreases for a constant length of the strip. Under these
conditions the system is energetically isolated and a transition of the stored energy into work performed on
the slip planes takes place within it.

We consider yet another circumstance, Let the tensile stress ¢y; increase monotonically from zero and
then, if there is a falling branch, let it decrease. Then on the rising branch the function S(oy;/2) is single-
valued and, consequently, p, =0. From Egs. (4.11) it follows that in this case AR =0, i.e., the localized shears
on both families of slip lines are the same and the lines function symmetrically (see Fig. 5a), If the material
begins to soften, then the function S(0y4/2) becomes non-single-valued, and the possibility of the other mode of
deformation appears, when p, #0 and AQ =0 (see Fig. 5b). This signifies thatthe decrease of the shear stresses
on one of the planes takes place as a result of an increase in the shear, while on the other plate it occurs as a
result of unloading. If we take into account the alternate character of the functioning of the slip lines, then
we can draw the conclusion that on the falling branch the second mode of deformation is being realized. With-
out dwelling on problems of the general formulation of boundary-value problems and of existence, uniqueness,
and stability of the solutions (4.10), we note that we can expect nonuniqueness of solution on the falling branch.
At the same time, some of the solutions will be unstable. A stability analysis provides a natural criterion of
choice of the solution.

It can be shown that in the case of free surfaces AjA, and A,A; the solution (4.14) is unstable and non-
unigue. Since the role of this solution is illustrative, we assume that kinematic constraints, which result in
disturbances leading to instability, are specified on the boundaries AjA, and A,A;. The solution (4.14) points
to yet another peculiarity inherent to deformation of elastoplastic hardening materials. From (4.14) it follows
that the "tensile force—elongation of strip” diagram can have the form depicted in Fig. 6. We assume that the
loading takes place with a controlled monotonically increasing elongation. Then for an elongation equal to v
there occurs in the material a noncontrolled liberation of a part of the elastic potential energy, which corre-
sponds to the transition from the point A; to A, and then to A;. Here, in the transition from A, to A,, the liber-
ated potential energy is entirely dissipated on the slip lines, while in the transition from A, to A, only a part
‘of the energy is dissipated; the rest is transformed into the kinetic energy of the elements, If such a "dis-
charge™ does not destroy the specimen, then its subsequent deformation will take place along the branch AjA,.

We consider the axisymmetric solution of the problem of the stress—strain state of the material around
a circular hole. We introduce the system of polar coordinates (r, B) and assume that o3y =0r =0 on the bound
‘ary and inside the region of deformation. Hence 6 = 8 and the slip lines will be logarithmic s%irals. Let the
elements be regular and their dimensions not depend on 8: f{(A) =f(Ay) =1, Iy =l = £r. We also assume that
mass forces are absent. Then the system (4,10) is transformed into
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where

26 = (%) + S(oh); ol = ol = zr Bk,

Expressing the half-difference of the principal stresses in terms of the radial displacement from the
first two equations and then using the last equation, we obtain the general solution in the form

ol b (% ir_)
1.,_2r5—r—dr—|—01r, o,,.ﬂrfl__zv(dr—i— =,

u av!‘ ! l’f
Ogp=—T+ 1 —m\em T ) , (4.15)
1
0 =5—[8(ck)—§ (o),
1—2v(cC, ) . e . .
where w = o ('rT — T), and 7 satisfies the final relation

20G (1) + 2er(t —v) 7 = 2L 2 (4.16)
(Cy and C, are the integration constants). On the rising branch the function S is single-valued and G =8, w=0,
i.e., on the rising branch the slip lines from the different families function identically. On the falling branch

the function S is non-single-valued,w =0, and localized shear (slip) continues only along one of the families of
slip lines.

If G(7) is indeterminate for a certain T =k (ideal flow), then Eq, (4,16) is replaced by the equation T =k
and (4.15) is transformed into the usual solution of the theory of ideal plasticity. For G(r} =0 (no local strain,
elasticity), Eq. (4.15) is transformed into the solution of the theory of elasticity.

In the presence of a falling part of the G(r) diagram the solution {4.16) can be nonunique, pointing to the
possibility of a noncontrolled liberation of the stored elastic energy in a certain region of the material being
deformed.

Thus, we have considered the deformation of a material divided into elements by a discrete grid of slip
lines, The distances between the slip lines were assumed to be sufficiently small, so that the transition into
differential equations did not incur large errors. For a numerical solution of the problems an inverse trans-
ition into a "discrete® model is required. It is obvious that in the case of formulation of problems for numer-
ical calculation there is no need to make two transitions: Theproblem can be posed at once for a discrete grid
of slip lines. Here two circumstances can be used: for an elastic body we can take any convenient grid of
slip lines of arbitrary orientation and denseness, while for an ideally plastic body we can take a grid of any
denseness.

The first circumstance allows us to consider elastoplastic problems, when the distance between the
actual slip lines (on which the slip is nonzero) is comparable with the characteristic dimension of the body
being deformed. Above, the determining relations for the stresses—strains of the elements and the stresses—
slips between the elements were written out separately. The first relations were assumed to be purely elas~
tic or rigid, while the second relations were assumed to be purely plastic, These restrictions are not of a

L2

Fig. 6
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major character and admit a generalization of relations both of the first and of the second types. In particular,
we can take into account creep, nonorthogonality of the slip lines, dilatational effects [10], and effects of in-
ternal friction which have importance for soils and rocks.
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FORMING OF FIBROUS LIGHTGUIDES WITH A SMALL
AZIMUTHAL ASYMMETRY OF THE BILLET

M. E. Zhabotinskii and A, V. Foigel’ UDC 532.5:‘535.8:666.189.2

One possible type of fibrous lightguide is a transparent microcapillary., Small losses with the propaga-
tion of light along a lightguide are possible if its transverse cross section is sufficiently close to a concentric
round ring and is constant over the length of a fiber. From a physical point of view, the process of the form-

ing of a lightguide can be represented as the flow of an incompressible Newtonian liquid with avariable viscosity
~ (some polymers are not Newtonian liquids and are therefore not discussed here).

Article [1] discusses the pulling of a microcapillary from a billet, i.e., a solid hollow cylinder of given
dimensions. The billet and all the external conditions under which the pulling was done were assumed to be
axisymmetric, as a result of which the microcapillary pulled was also axisymmetric with a round cross sec-
tion. In [1] equations for the form of the jet (the transition from the billet to the microcapillary) were ob-
tained and the dependence of the dimensions of the microcapillary on the parameters of the process was found.
We discuss below the pulling of a microcapillary from a billet, taking account of the small real nonaxisymmet-
ric character of the latter; the degree of nonaxisymmetry of the microcapillary is found and its dependence
on the parameters of the process is investigated.

§1. Inall aspects, except for the assumption of the nonaxisymmetry of the process, the statement of the
problem is the same as in [1]: the temperature distribution is assumed to be given; in all cross sections, the
thickness of the wall of the billet and the jet is assumed to be small in comparison with its radius; by virtue
of the thinness of the wall, the temperature is assumed to be identical at all points of the transverse cross sec-
tion of the jet and to depend only on the longitudinal coordinate z; the viscosity is a known function of the tem-
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