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w 1. The c l a s s i ca l  descr ip t ion  of the kinematics of deformation of a solid medium is based on the assump-  
tion o f  sufficient smoothness  of the displacement  field. The smoothness assumption allows us to introduce the 
concept of a s t ra in  t ensor  and make use of the tool of differential  equations for the descript ion of the deforma-  
tion of the mater ia l .  However, there  exist broad c lasses  of motion of the medium where the displacement can 
be connected with the appearance of  a plast ic s train.  Experiments  with various mater ia ls  show that the mech-  
anism of plast ic  s t ra in  is connected with localization of shear  along cer ta in  surfaces  [1, 2]. The latter s igni-  
fies that on these cer ta in  surfaces  the displacement  vector  experiences a violent break. In the general  case 
this c i rcumstance  turns out to be important and must  be taken into account when descr ibing plastic de forma-  
tion. Making cer ta in  assumptions which are  justified from a mechanical  viewpoint, we can descr ibe  a non- 
smooth displacement  field by fair ly simple means with the aid of a collection of smooth functions. 

As an i l lustration, we shall consider  the case of a single function of a single variable.  By F(x) we denote 
the original  function having a violent break at the points x i. We assume that the distances between the breaks 
are  small ,  that the function F(x) is sufficiently smooth between the break points, andthat  the values of the de- 
r ivat ives  of F(x) on the right and on the left of the break points are equal to one another; i.e., the function 

F' (z) for x # xi, 

p ( z ) =  F ' ( x i •  for x = z i  

is sufficiently smooth. 

Let f(x~ be a smooth function sat isfying the conditions f(x i) = F(x i + 0) and P (x) = ~ p (z) dz.  Then the 

original  function F(x) can be c h a r a c t e r i z e d  by a pair  of smooth functions f(x), P(x) and a sequence of break 
points x i (Fig. 17. The function fix) has  the meaning of averaging the original  function, and it charac te r i zes  
(with a cer ta in  accuracy)  the values of F(x) over the entire domain of definition. The function P'(x) - f'(x) 
cha rac te r i zes  the difference in local behavior of the original  and the averaged functions, and for given break 
points determines  the magnitude of jumps of the original  function. Thus, a jump of the function F(x) at the 
point x i +t with an accuracy  up to l~ equals { f' (x i) - P'(xi)} l i where / i = x i  + t -  xi is the distance between the 
adjacent break points. 

Analogously, we shall consider  the case of a vector  functionV =Vlel +V2e 2 of the vector  argument r = 
xie t + x2e 2 (el, e~ is the or thonormed basis). Let  l <<1 be a charac te r i s t i c  dimension of the regions where the 
function V(r) is sufficiently smooth. We shall call such regions elements .  We assume that for the original  
functions there exists a smooth average v(r) such that v(r i) =V(r i) at the centers  of elements r i ;  on the bound- 
ary separatin~ elements with the centers  at the points ri+ r i + ~ the break of V(r) with an accuracy  up to !r i + l - 
riI  2 equals A(ri)(r i + l -  ri), where A is a tensor  of the second rank with smooth components Akin, k, m= 1, 2. A 
smooth vector  field v(r) and a tensor  field A(r) are put in correspondence  with the original  field V(r). It can 
be shown that the descript ion thus introduced imposes the following constraint  on the class  of discontinuous 
functions: Onthe break lines the values of one-sided derivat ives  OVk/OX m must  be equal to one another. It 
is obvious that 
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A h m  = Ov~,/Oxr, - -  OV~/Oxm, {1.1) 

where  the functions 3Vk/aX m on the b r eak  l ines are  p r ede t e rmined  by the i r  one-s ided  values .  

Thus,  ce r t a in  c l a s s e s  of nonsmooth functions can be descr ibed  by col lect ions of smooth functions, one of 
which has the meaning of averag ing  the or ig ina l  function, while the r e s t  c h a r a c t e r i z e  the breaks  of the o r ig i -  
nal  function. As applied to the d i sp l acemen t  field, such a descr ip t ion  signif ies  that  together  with the smooth 
(averaged) field of d i sp lacements ,  new k inemat ic  va r i ab les ,  which provide information about the b reaks  lost  
in the averag ing  p r o c e s s ,  a re  introduced.  

The additional k inemat ic  va r i ab l e s  (on the bas~s of var ious  hypotheses)  have been introduced in many  
invest igat ions  (for example ,  in [3]); deformat ion  of solids with a nonsmooth veloci ty  field has d i rec t ly  been 
inves t igated in [4]. 

We cons ider  an example  of desc r ib ing  a discontinuous d i sp lacement  field by m e a n s  of smooth t ensor  
and vec tor  f i e l d s . . W e  as sume  that  the b reak  l ines a re  s t ra ight ,  orthogonal,  and pa ra l l e l  to the coordinate  
axes .  By x i and x~ we denote the coordina tes  of in te rsec t ion  of the b reak  lines with the co r respond ing  axes.  
Le t  the smooth  descr ip t ion  of the field V(r)  have the fo rm 

Vl ~ SX'2, Y2 ~ ' 0 ,  

A l l  = O, A ~ =  O, A l~  = s - -  s~, A2t  -~ O, 
(1.2) 

where the coeff ic ients  s and s e depend only on the loading p a r a m e t e r .  We consider  the mechan ica l  s tgnif i -  
~anee of the flow (1.2). F i r s t  of all, f r om (1.2) it follows that  the components  of the d i sp lacemen t  vec tor  n o r -  
:real to the b r e a k  l ines are  continuous: At1--avt/Ox t - O V 1 / ~ x  1 =0 and.A22 = ~ v 2 / a . x  ~ - OV2/~x2 =0. The breaks  
of the shea r  components  of the d i sp lacemen t  vec tor  on the l ines x t =x~ and x 2 =x] equal  

~ + i _  , ~ - t  = 0, 
Y1~ = A~I 2 

','~l = & l  y = ( s -  se) 2 

F r o m  (1.2) it also follows that  0Vl / ax  2 =-Al2 + a v l / b x 2 = S e  and 0V2/ax t =-A21 +~v~/Ox t =0. 

Thus,  the desc r ip t ion  (1.2) and the data  on x] and x~ allow us to r e s t o r e  the discontinuous d i sp lacement  
:field and the flow pat tern:  (1.2) r e p r e s e n t s  a p l ane -pa ra l l e l  flow under the conditions where  the b reaks  of the 
shear  components  of the d i sp lacemen t  take place only along the family  of l ines x 2 =eons t  (Fig. 2a). 

If  

then 

V 1 ----$Xu, V 2 ---- 0 ,  

A l 1 = 0 ,  A22=0, A l ~ 0 ,  A 2 1 = s - - s , ,  

~ = 0, ~ 2  = A~ . = ( s - -  se) 2 

(1 .3)  

i .e . ,  Eqs.  (1.3) define a p l a n e - p a r a l l e l  flow under  the conditions where  discont inui t ies  of the tangential  c o m -  
ponent  of the d i sp l acemen t  occu r  only along the l ines x t = const  (Fig. 2b). 

We shall  cal l  the b r eak  l ines of  the d i sp lacemen t  vec to r  sl ip l ines,  while the breaks  of  the tangent to 
the s l ip line of a component  of the d i sp lacemen t  vec to r  will be cal led a sl ip or  local ized shea r  s t ra in .  

w We s h a h  cons ide rp l ane  s t r a in  of a p las t ic  medium.  As was mentioned,  p las t ic  s t r a ins  are  connected 
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with local izat ion of shea r  along ce r ta in  l ines (slip l ines).  I t  is na tura l  to expect  that  this fact  mus t  be r e f l ec t -  
ed in the co r re spond ing  p las t ic i ty  equat ions.  However ,  f r o m  the c l a s s i ca l  equations only the equations of 
ideal  p las t ic i ty  single out spec ia l  d i rec t ions  (the d i rec t ions  of the c h a r a c t e r i s t i c s  of  veloci ty  and s t r e s s  
f ields),  which can be in te rp re ted  as a re f lec t ion  of the shea r  m e c h a n i s m  of deformat ion  along the s l ip l ines .  
The equations of hardening  p las t ic i ty  a re  of  the el l ipt ic  type,  and they do not single out spec ia l  d i rec t ions  in 
the development  of  the s t ra in  [5]. 

In [6] a method concerning the cons t ruc t ion  of models  of med ia  with an a r b i t r a r y  rheologica l  behavior ,  
the m e c h a n i s m  of de format ion  of these  media  having a shea r  c h a r a c t e r  along ce r t a in  d i rec t ions ,  was con-  
s ide red .  Below we shal l  cons ider  a r ea l i za t ion  of [6] for  r i g id -p l a s t i c  and e las t0Plas t ie  media  with a d i ag ram 
which can have r i s ing  and fal l ing branches .  

We a s sume  that  for  ce r t a in  ex te rna l  loads the region being deformed  goes as a whole into a p las t ic  s ta te ,  
the p las t ic i ty  condition does not depend on the f i r s t  invar iant  of  the s t r e s s  t ensor ,  and the s l ip l ines a re  o r -  
thogonal.  By X~ and X2 we denote the p a r a m e t e r s  of the sl ip l ines.  Then 

0s--~=tg O--  4 / a ~ , ~ = t g  O + T j  ~ ,  

Oli Ol~ Oa~ O0 ,Oa s O0 

where  x I and x 2 a r e  the Car t e s i an  coordina tes ;  0 - r / 4 i s  the angle between the tangent to the line X 1 and the 
Ox 1 axis;  and ll and/2 a re  the lengths of  a r c s  along the co r respond ing  l ines .  

Le t  the de format ion  h i s to ry  of the m a t e r i a l  be known. Then the angle 0 =0 (xl, x 2) is equal  to the angle 
between the d i rec t ion  of the m a x i m u m  pr inc ipa l  s t r e s s  andthe  Oxi axis at the instant  when the m a x i m u m  
shea r  s t r e s s e s  at the point (x l, x~) r e a c h  a ce r ta in  known magnitude k. To de te rmine  the angle 0 and, conse-  
quently, the or ienta t ion  of the grid of s l ip  l ines,  we mus t  solve the e las top las t i c  p rob l em in the genera l  case .  
In pa r t i cu l a r ,  if  the m a t e r i a l  has  a wel l -developed yield p la t fo rm,  then the or ienta t ion  of the grid can be d e t e r -  
mined by methods  of the theory  of ideal  p las t ic i ty  [7]. In ce r t a in  cases  the or ienta t ion can be de te rmined  f rom 
s y m m e t r y  condit ions,  d i ve r s e  va r ia t iona l  cons idera t ions ,  and so forth.  We shal l  a s sume  the angle 0 to be 
known over  the en t i re  reg ion  of p las t ic  deformat ion .  

The second p a r a m e t e r  cha r ac t e r i z i ng  the grid of slip lines is provided by the d imensions  of the e l e -  
men t s .  We choose the two coordinate  l ines ~ ,  Xl =const ,  which will be divided into e lementa l  segments :  

AXl = hQ.1)e, AX2 =/2(X~)s. (2.1) 

Equations (2.1) de t e rmine  the par t i t ion of the ent i re  p las t ic  region into e lements ;  the lengths of the s ides of 
the e l emen t  at  the point (kt, ~ )  equal  

/1 = h(~.~)ax(~, ~)e, (2.2) 

Hence,  in pa r t i cu l a r ,  it follows that  the part i t ion of the en t i re  p las t ic  region into c o r r e c t  e l ements  is poss ib le  
only for  the condition ( ~ / ~ )  In  (al/a~) =0. In the genera l  case  such a par t i t ion  is not poss ib le .  

Data  on the phys ic s  of  sol ids  and expe r imen t s  show that  the p las t ic i ty  l imit  of  e l emen t s  isolated by the 
gr id  of sl ip l ines is much higher  than the p las t ic i ty  l imi t  of the macrobody .  If  the macrobody  is t r a n s f o r m e d  
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into the plast ic  state for maximum shear  s t r e s se s  equal to k, then the elements are t rans formed  into the p las -  
tic state for maximum shear  s t r e s se s  k(l),  where k(/)>>k. We confine ourselves  to such loading paths for 
which the shear  s t r e s s e s  within the elements  do not exceed k(l). The l a rge r  the rat io k(/)/k, the broader  the 
c lass  of such loading paths.  

Toe plast ici ty l imit of an element  depends on its dimension I .  Therefore ,  we can assume that the 
s t r e s ses  acting on the element  determine its dimension; i.e., the denseness of the grid is determined by the 
s t r e s s  field. The problems of f rac tur ing of the elements,  which can take place during hardening of the ma-  
ter ia l ,  as well as development of slip lines f rom regions with the highest s t ress  into regions with lower 
s t r e s se s ,  are  not investigated in this work. We shall consider  the deformation of the mate r ia l  after the fo r -  
mation of a grid of slip lines,  where the functions fie and f2e, charac te r iz ing  the denseness  of the grid, are 
assumed to be known. 

We assume that under shear  no variat ion of the density (dilatation) of the mate r ia l  takes place and that 
the four components of the tensor  A f rom (1.1) are determined only by two invariant functions F and ~2: 

A u = cos 20.F, A~_~ = --cos 20.F, (2.3) 

A~I = --~ + sin 20.F, At2 = fl + sin. 2O-F. 

Conditions (2.3) signify that the components (normal to the sides of the elements) of the nonaveraged displace-  
ment  field are continuous. The mechanical  significance of the displacements  follows f rom the equation 

I (A12__ A.n) I (oV, OV,] I (av, -- OvL~ 

i .e. ,  the var iable  fi cha rac t e r i ze s  the different rots  (rot  = curl) of the original  and the averaged displacement  
fields. Together  with the var iable  fi, we shall use the var iable  ~: 

which has the meaning of half the rot of the original nonsmooth displacement field. 

In the example (1.2): I/2 rot v=-s /2 ,  ~ = (s - Se)/2 , and c0=-Se/2. In the example (1o3): I/2 rot v = -  s/2, 
~2 = -- (s -- Se)/2, w = - s + (Se/2). 

We shall show that the constra ints  on the class  of discontinuous functions imposed by the descr ipt ion 
(1.1) are completely acceptable f rom a mechanical  viewpoint. Indeed,  on the break lines of displacements  
the shear  and normal  components of the s t r e s s  tensor  are continuous. We assume that all components are 
continuous. The der ivat ives  ~Vk/0X m determine the deformation and rotation of an element under the action 
of the s t r e s s e s .  Let  the s t ra in  of the element be connected with the s t r e s ses  by Hooke's  law. Then continuity 
of the elast ic  s t ra ins  follows f rom continuity of the s t r e s se s .  (If on cer tain lines the s t r e s ses  are discontinu- 
ous, then the analysis can be ca r r i ed  out by the usual  methods.) Continuity of the rotations can be shown from 
the continuity conditions of the components of the displacement  vector  normal  to the sides of the elements.  
Hence we have the continuity (equality of the one-s ided values) of each of the derivat ives 0Vk/0X m = 0Vk/0X m -  
Akin. It is obvious that for  the components of the tensor  of elast ic  s t ra ins  (1/2)(0Vk/0X m + 0Vm/0Xk)ekem = 
(1/2)(0 Vk/0X m + 0Vm/0X k - A k m -  Amk)ekem the compatibil i ty condition in the general  case is not fulfilled and 
must  not be fulfilled. Indeed, if f rom a smooth s t r e s s  field we construct  the field of elast ic  s t ra ins ,  then, in 
spite of the smoothness  of the lat ter ,  there will be no compatibility, since the s t r e s se s  in the general  case do 
not sat isfy the B e l t r a m i - M i t c h e l l  equations. On the other hand, for the components of the tensor  of total  
s t ra ins  (I/2)(aVk/0X m + 0Vm/0Xk)ekem, the ntotal" displacements  v I and v 2 (a smooth field of averaged dis-  
;10lacements) do exist,  and therefore  the compatibil i ty condition is fulfilled fo r  the total s t ra ins .  

The problem of "compatibil i ty" connected with variabi l i ty of the curvature  of slip lines is more  compli-  
cated. It will be shown below that the mechanism of deformation adopted coincides with the mechanism of de-  
formation of an ideally plast ic mater ia l ,  which can be introduced as an interpretat ion of an associated flow 
law (the Geir inger  relat ions) .  Therefore ,  just as for an ideally plastic mater ia l ,  "compatibilityn connected 
with variabi l i ty of the curvature  of slip lines will be fulfilled only for sufficiently smal l  (localized) s t ra ins .  
We shall  confine ourse lves  only to such s t ra ins .  

w We shall cons ider  the case where the elast ic  s t rains  of the elements can be neglected. F rom the 
stiffness condition of the elements  and the continuity condition of the components of the displacement  vector 
no rma l  to the sides of the elements  we have the equations 

409 



Owt O0 OW2 -1- O0 
o~.--]" - -  w= ~ ---- O, ~-~=., wt ~ = O, (3.1) 

where  w i and W2 a re  the p ro jec t ions  of  the d i sp lacemen t  vec tor  onto the no rma l s  to the s l ip l ines )'2 and )'i. 

We calcula te  the magni tude of the jump of the d i sp l acemen t  component  tangent  to the side of the e lement ,  
By V n and v n we denote the pro jec t ions  of the or ig ina l  and the averaged  d i sp lacement  vec to r s  onto the n d i r e c -  
tion (Fig. 3). Then 

Ov n OV n Cos20(Ov t Ov2~ s in20(Ov2  �9 #_~vl~ 

F r o m  (2.3), (3.2), and the s t i f fness  condition of the e lement  i t  follows that  the magni tude  of the jump is 

702 -~- \ Om Om ] / t a l e  = (F  - -  f i )  f l a t  ~ = 

Ov 2 . = . s in  20/#t '~  Ovll Q } / t a t  s  co+20(o , + �9 ' = 

" ( t ow~ . w~ 00 ) 

Analogously,  for  the o ther  side of the e l emen t  

= x,-g~ On ] f,,_aoe ---- (F + Q) ].,a:~_ = 

( i o~, w_o oo ) 
'as ~ a+ 0"~,~ "}- O) /2a.~E. 

(3.2) 

(3.4) 

The expres s ions  (3.3) and The values  of the jumps expl ic i ty  depend on the d is tances  between the sl ip l ines .  
(3.4) de t e rmine  the local ized shea r  s t r a in  (slip). In con t ra s t  to shea r  de te rmined  by the s t ra in  t ensor  and 
c h a r a c t e r i z i n g  the va r ia t ion  of a r b i t r a r i l y  or iented  angles,  the quanti t ies Yt2 and Y~I have a meaning only on 
the co r respond ing  s l ip  l ines and c h a r a c t e r i z e  actual  shea r  (the sl ip having the d imension of length) of the e l e -  
ments  along these  p lanes .  

The shea r  s t r e s s e s  which can develop on the sl ip planes are  de te rmined  by the magnitude of local ized 
s t r a in  on these  p lanes ,  i .e . ,  

o1~ 2 = r (V M, ~ ,  = r (?~,) (3.5) 

o r  

= s @ 2 ) ,  = s (3 .0 )  

Here  and in the following the index 0 m a r k s  va r i ab l e s  r e f e r r e d  to the cor responding  sl ip planes .  

In the f o r m a l  ro le  of  the m e a s u r e  of  shear  on a s l ip plane we can take any quantity by which the values 
Y~2 and ),~ 1 can be r e s t o r e d  (for example ,  the d imens ion less  quantity y~ etc). The c r i t e r ion  of  the 
choice of the m e a s u r e  is provided by re la t ions  of  the type (3.5): For  the m e a s u r e  of shear  we mus t  take a 
quantity which can be used in the defining equations.  In all  equations being cons ide red ,  we have taken the 
b reaks  of d i sp lacements  yl~ and Y~t which t h e m s e l v e s  have the d imensions  of length as the m e a s u r e  of shear .  
If, however ,  for  a ce r ta in  m a t e r i a l  t he re  occu r s  a poss ib i l i ty  of  using a d imens ion less  m e a s u r e  of p las t ic  
shear ,  then all the n e c e s s a r y  calculat ions mus t  be c a r r i e d  out analogously.  

Equations (3.3) and (3.4) show that  local ized s t r a ins  on sl ip planes of d i f ferent  fami l ies  can be different  
even for II --/r We wri te  the condition of functioning of fami l ies  of sl ip l ines in the fo rm 

0 0 __ bs -I- b~72t -- 0+ (3.7) 

I f  one of the coeff ic ients  bl or  b 2 is zero ,  then only one of the fami l ies  of sl ip l ines functions; if b 1 +b~ =0, then 
both fami l ies  function identical ly,  and so forth.  The p rob lem of choosing the coeff icients  will be cons idered  
below. 
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Equat ions  (3.1), (3.5), and (3.7), in combina t ion  with the equat ions  of  equ i l ib r ium,  f o r m  a c losed  s y s t e m  
r e l a t i v e  to ~r~l, ~2,  ~0,  ~01, wl ' w2, and co: 

0 a,,a~l--~ 0 a z a O l _ a 6  0 aO 
- . + = o ,  

0 o 0 o o O0 , o O0 . .,o ^ 

Ow~ 00 Ow~ O0 
ox, w~ -~ = O, -~  + w , - ~  = O, 

'O~,'l ' ~  "q a~,i 

o [( t Ow, w, ~O ) ] 
0"21 : T " O~ a a l  aZ z + o} a2fc~a , 

(3.8) 

w h e r e  X 0 and X ~ a re  the p ro j ec t i ons  of  the v e c t o r  of  body fo rce  onto the tangents  to the slip l ines  k~ and X~. 

The r e l a t i ons  (3.5) show tha t  c a s e s  in which ~~ 2 ~a~ 1 a re  poss ib le .  This  s igni f ies  tha t  fo r  the m a i n -  
t enance  of  equ i l i b r ium on the s ides  of the e l e m e n t s  d i s t r ibu ted  m o m e n t s  m u s t  m a k e  the i r  appea rance  (body 
m o m e n t s  a re  a s s u m e d  to be absent) .  F r o m  the equ i l ib r ium condi t ions  we have the equat ion for  the m o m e n t s :  

O act~o i 0 o --aX, -F ~ a,Ixz2 + aza= (002 - -  .~,) = 0 �9 (3.9) 

The sys tem (3.8), (3.9) is c losed r e l a t i v e  to a l l  va r i ab les  except  #~ 1 and 0 p22. The i n d e t e r m i n a c y  of  the m o -  
m e n t s  is connec ted  with the s t i f fness  of  the e l e m e n t s ,  and in each  p a r t i c u l a r  p r o b l e m  it is e i t he r  e l imina ted  
by addi t ional  c o n s i d e r a t i o n s  o r  is r e t a ined .  In the C a r t e s i a n  Coordinates  the s y s t e m  (3.8), (3.9) is t r a n s f o r m e d  
to the f o r m  

o=._._~ _..E~= _ X t =  O, "E~=~ aa~+X~=O, 
�9 Ov~ 

( aP 2, . 

o , , j  + + = #x2] O, 

+ - -  ad~8 (3.10) 

/reosaO/a,,, Or,\ sin 20 /O% . O,z~ ] ) 

cos 20 axe} -~- sin \azz - + + = 0 ,  

at~___~, + a~ ,  -t- (r _ cr~) = 0, 
Oxz Ox~ ~. 

where  we have in t roduced  the u sua l  nota t ion and A = (b2a~f2 - blflal)/(b2a~f ~ + blf~a~). Sys t em (3.10) is of  the 
hype rbo l i c  type .  Slight d i scont inu i t i es  of  the d i s p l a c e m e n t s  v~ and v~ a re  poss ib le  only on the s l i p  l ines  X~ and 
X 2. At the s a m e  t ime ,  if a weak  d i scon t inu i ty  is r e a l i z e d ,  then in the g e n e r a l  ca se  it g ives  r i s e  r o a n  intense 
d i scont inu i ty  o f  the s t r e s s e s .  F r o m  the equat ions  of  equ i l i b r ium and (3.5) it fol lows that  intense d i scont inu-  
i t ies  of  the s t r e s s e s  u n d e r  condi t ions  whe re  the field o f d i s p l a c e m e n t s  vl and v~ is smoo th  a re  poss ib le  only 
on the sl ip l ines  h I and ~,2. 
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The th i rd  and fourth equations of  s y s t e m  (3.10) show that  the p las t ic  potent ial  

r (o~,  0) = o0 + o0, o,. + o . .  z ~ cos 22 + ---'V--- sm 22, 

ao~ _ ~. a a )  a_Z t = ~. 
t u  = ~ - -  0-'~' e , t  = Sz ,  . .  

~t - -  ~ = ~ (8=s -{- a=,i ao , ,  ~ , ,  

( 3 . ~ )  

ex is t s  for  the s t r a in s .  Since for  the loading paths cons idered  the angle 0 depends only on the coordina tes ,  
(3.11) can eas i ly  be t r a n s f o r m e d  into re la t ions  for the s t ra in  r a t e s .  

The las t  equations of  the s y s t e m  (3.1]) can be r ega rded  as re la t ions  de te rmin ing  the loading sur face :  

I , h ( a i ~ ,  e)[ - -  IT[(X/2 - -  Q ) a , h e ] l  = a ) , (zhm,  e ~ ,  x , ,  z , ,  e) = 0,  

J(Ps(aam, 0)J - -  IT[(~./2 -4- ~)a..J~lJ = (1)~(at, m, ea~, x~, x... O) = O, 

r = o?,.(,~,,,,,, 0); ,~, = ~, ( ~ ,  0); 

(3.12) 

where  

�9 u o 

~. = cos 2~ (ell - -  e..J + 2 sm 2~1, = ~ ~ / , a f t '  
k 

2A 

The loading su r face  in the genera l  case  is s ingular  and cons is t s  of the two su r faces  ~1 and r The region 
�9 l< 0, ~ <0 co r r e sponds  to the r igid s ta te  of the m a t e r i a l ,  while the region 61, ~ =0 co r r e sponds  to the p las t ic  
s ta te .  The fo rm of the express ion  (3.12) is chosen with account taken of the fact that  the function (functional) 
T is odd. 

The concepts  of loading and unloading are  defined in the space of s t ra ins :  Loading takes  p lace  if at 
l eas t  one of the quanti t ies  yi~ or  ~/~ 1 v a r i e s .  If both qu .n t i t t e s  a re  fixed, then unloading o r  neu t ra l  loading 

t akes  p lace :  unloading if al~',2. I d~km<0,  and neutra l  loading if ~ d a h m  = 0, where  1 = 1 o r  2. 
aakm i hm 

Thus,  Eqs.  (3.10) show the following: In the genera l  case ,  as a r e su l t  of p las t ic  deformat ion,  the m a -  
t e r i a l  becomes  an iso t rop ic  and inhomogeneous;  the fo rm of anisot ropy is connected with the or ienta t ion of 
the grid of  sl ip l ines ,  while inhomogenei ty is connected with the denseness  of this grid;  a potential  exis ts  for 
the t enso r  of p las t ic  s t ra in ;  the loading su r face  is s ingular ;  and t hede fo rma t ion l aw  is nonassocia t ive .  In p a r -  
t i cu la r  c a se s ,  we can have s i tuat ions where  the loading su r face  is smooth,  the deformat ion  law is assoc ia t ive ,  
and the m a t e r i a l  is homogeneous .  I f  T '  ~--0, then Eqs.  (3.10) a re  t r a n s f o r m e d  into the equations of ideal p l a s -  
t ic i ty .  The model  of ideal p las t ic i ty ,  which can be cons idered  as a l imi t  case  of (3.10), p o s s e s s e s  a number  
of except ional  p rope r t i e s :  In spite of the poss ib le  inhomogeneity of the ma te r i a l ,  connected with the geome t ry  
and denseness  of the grid of sl ip l ines,  the deformat ion  equations do not depend on this inhomogeneity,  nor  do 
they depend on the poss ib le  d i f ference  in the functioning of slip lines belonging to different  fami l ies ;  the s t r e s s  
t enso r  is s y m m e t r i c  even in the case  of unequal local ized shear  s t r a ins  (slippage) on planes belonging to dif-  

fe ren t  f ami l i e s .  

We shal l  cons ider  the p rob lem of indentation of a smooth  r igid die into a weight less  ha l f - space  of p las t ic  
m a t e r i a l  with a yield p la t fo rm.  We as sume  that in the case  of an ideal flow a plas t ic  Hill zone develops in 
the m a t e r i a l  (Fig. 4): 0 -  7r in the region AIA~A3, 0 =~ +~r/4 in the region A2A~A 5, and 0 -- ~/2 in the region 
A3A4As, where  r and fl a r e  po l a r  coordinates  with a pole at the point A 3 (the flow is s y m m e t r i c a l  about the 

s t ra igh t  line x t = -  a). 

We shall  cons t ruc t  the solution of the s y s t e m  (3.10) for these values of 0 and the following boundary 
conditions: Onthe boundary with the r ig id  region the no rma l  d i sp lacement  component  is continuous, on the 
boundary AIA 3 the shea r  s t r e s s e s  a re  absent  and the ve r t i ca l  d i sp lacement  is h, the boundary A3A 4 is f ree  
f rom s t r e s s e s ,  and on the l ines A 2 A  ~ and A3A 5 the cor responding  d i sp lacements ,  s t r e s s e s ,  and momen t s  are  
continuous. We introduce the cu rv i l inea r  coordinates  )'l and ~'2 (see Fig. 4). It can be shown that a~ =T(0) =k 

T{ in the reg ion  A,A,A,  while  o 0 , =  in the region A,A3    rom the condition of  ontinui  of 
\ bs/sr-- bt/I 

the s t r e s s e s  on AsA ~ it follows that  
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----~]~ r , , = T ( 0 ) = k "  (3.13) 

The l a s t  equat ion al lows us to solve the p r o b l e m  of funct ioning of sl ip l ines  belonging to d i f fe ren t  fami l i es  
[i.e., to d e t e r m i n e  the coef f ic ien t s  bi and b 2 in Eq. (3.7)]. If  the flow is ideal  [T(y~I) - k ] ,  then condit ion (3.13) 
does  not impose  any c o n s t r a i n t s  on b 1 and b 2. IfT(7~l) ~cons t ,  then f r o m  (3.13) it fol lows that  bl =0.  C e n s e -  
quent ly ,  the cont inui ty  condi t ion (3.13) shows that  in the case  of  an ideal  flow (hardening o r  softening) loca l ized  
s h e a r  is poss ib le  only along the fami ly  of  l ines  X 2. Thus,  in the given case  the loading condi t ions  uniquely de -  
t e r m i n e  the mode  of  de fo rm a t i on .  

A solut ion sa t i s fy ing  the boundary  condi t ions  e n u m e r a t e d  above has  the fol lowing f o r m :  

in the r eg ion  A3AsA4: 

v x = h, w = --h, (,) = O, (3.14) 
all = --2k, o.2~ = o12 = o21 = O, Pn. = b'e .z -- O; 

in the reg ion  AaA4As: Vr = 0, vfl = ~/~h, w = -4"~h [ r ,  

r 

~ t r r  = r d k \ r - -  ~115 ~ = 0 ;  
fl 

in the r eg ion  AiA2A3: v t = h,  v 2 = h,  w = O, P~I = O, P22 = O, 

l [u.xr [--'r, -- x'z ~- a) _}_ "tl.r (-'~ X, -~ x2 " u = k ~ -  "-E'[ \ y-~ l/'~ +'a)],  

( ) ]  O . . , : = _ _ k ~ l _ _  ~ 1~ - - - Z l  _7 1ts "~-Xl+X'2-~-a 

t ~ x f - - = 2  + a  __~( - - z i+z~- i -a  

w h e r e  

o V'~h k } - - k .  

When in teg ra t ing  the  equat ions  it was  addi t ional ly  a s s u m e d  that  ~ r r  and ~ r r  have no s ingu la r i ty  at the 
p o t n t r =  0 and O~B~/aB = 0. The indentat ion condi t ion and the d i a g r a m  of  s t r e s s e s  unde r  the die, dependent  on 
the depth h, a re  given by the e x p r e s s i o n  

~2~ I=,=0 = - -  k + '~' ((--  x~ + a) I V 2 ) .  (3.15) 

In the p a r t i c u l a r  ca se  o f  an idea l ly  p las t i c  m a t e r i a l  the solut ion and the l imi t  load (3.15) a re  t r a n s f o r m e d  
into the c l a s s i c  equ iva len ts .  

In the fo rmu la t i on  being c o n s i d e r e d  the p r o b l e m  is posed  as a p r o b l e m  of ini t ia l  p las t ic  flow, i .e . ,  h in 
the solut ion (3.14) m u s t  be sma l l .  Since in a cen t r a l i zed  wave a 2 = r  , then as r ~ 0  the d imens ions  of  the e le -  
m e n t s  along X 2 become  vanish ingly  sma l l .  We a s s u m e  that  along X 1 the d imens ions  a re  a lso smal l ,  i .e. ,  f~e ~ 
r if r ~ 0 .  Then the loca l ized  s h e a r  at the point  r = 0  has  no s ingu la r i ty ,  and for  a suff ic ient ly  s m a l l  h the flow 
of  the en t i r e  m a t e r i a l  wil l  be ideal.  By y .  we denote  the value of shea r  for  which ha rden ing  o r  sof tening be-  
g ins .  Le t  the r a t io  y . /a  be so s m a l l  tha t  the flow for  h on the o r d e r  y. can be a s s u m e d  to be a s t a r t i ng  flow. 
Fo r  these  va lues  of  h ye t  another  c i r c u m s t a n c e  connec ted  with the spec ia l  s tate  of the l aye r  of  m a t e r i a l  ad-  
jo ining the line s e p a r a t i n g  the r ig id  and p las t ic  r eg ions  a r i s e s .  

F r o m  the solut ion it fol lows that  on the line A1A2AsA 4 the shea r  componen t  of  the d i s p l a c e m e n t  vec to r  is 
d i scon t inuous  and the b reak  is equal  to vr2h. In connect ion  with the fact  that  we have taken quant i t ies  having 
the d imens ion  of  length as the m e a s u r e  of  loca l ized  s h e a r  in (3.5), the " s h e a r "  along the lineA1A2AsA4, in 
p r inc ip l e ,  d o e s  not d i f fer  in any r e s p e c t  f r o m  the loca l i zed  shea r  within the reg ion  of  de fo rma t ion .  The re fo re ,  
on the boundary  with the r ig id  r eg ion  t h e r e  e m e r g e s  an addi t ional  boundary  condi t ion on the s t r e s s e s :  

~ ( V ~ h )  (3.1~) (Yl2 ~ T 
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Fig. 4 

Since the dis tances between slip lines are finite, the additional condition (3.16) does not contradict  the 
solution constructed.  Indeed, the s t r e s s e s  (3.14) have significance only up to the line A'IA~2MsA' ~. Therefore ,  
the "boundary layer"  A~A2AhA~A'~MhA'~A'~, on the one hand, is under the effect of the shear  s t r e s se s  (3.14), 
while, on the other  hand, it is under the effect  of the shear  s t r e s se s  (3.16). This leads to the fact that the 
s t r e s s  ~0 is discontinuous on the line A~IA~2A~A~ o while in the "boundary" layer  it will vary rapidly along 
X~. F rom the conditions of equil ibrium of the elements  forming the layer  AIA~AhA~A'aA'~A'~A' ~ we find 

~ [ r(V2h)--r(-~/:) aV'2]-- 2k--2= V-2[T(V2h) --k ]. 

We note that T(0) s k, and not equal to k, as was assumed above. If  T(0) <k, then unloading can take place in 
regions where T~ =0, y2 ~ = 0. This var ian t  can be invest igated analogously to that considered .above. 

w We proceed  to the model of an elastoplast ic  body. We assume that the deformation of the elements  
is completely revers ib le ,  while all localized deformation (slip) is i r r evers ib le .  We shall f i rs t  consider  the 
problem of e las t ic  s t ra ins  of e lements  under the s t r e s s e s  a~m 1. The normal  s t r e s se s  cry. k give r i se  to an ex- 
tension of the element  in the direction of its action and a compress ion  in the la tera l  direction.  From the con- 
dition of continuity of the components of the displacement  vector  normal  to the sides of the element it follows 
that the compress ion  s t ra ins  coincide for the original  smooth and the averaged smooth displacement  fields. 
Consequently, 

t Ow t w2 ao = t - -VoO v o~,,  

t Ow, wl  ~0 1--Vo.o __ v Oot, 
(4.1) 

where /~ is the shear  modulus and v is Po i s son ' s  rat io.  J u s t  as for the r ig id-p las t ic  body, we can show that 
the shear  s t r e s se s  a~ and G~ in the general  case are  not equal to one another. The action of the s t r e s se s  
G~ 2 and G~I is represen ted  as a superposi t ton of the two sys tems  of s t r e s s e s  r ~ and r~ a[2 = r~ + r ~  and a~ l = 
TO_ 0 r _ .  F rom the s y m m e t r y  considerat ions it follows that the elast ic  shear  of the element takes place only 
under the effect of the component r o = (r +G~ The value of the elast ic shear  is 

(4.2) 

We consider  the equations for localized strain.  By definition, localized shear  on a slip plane equals 

( &'n OVn\ 

[r 2o pv l  ov 4 . ~i. 2o ( ~  + av,~l/ 
t---F- \b~T a~, / + T 

(4 .3)  

The relat ions (3.6), ref lect ing the connection between localized shear  and the corresponding shear  s t ress ,  r e -  
main unaltered.  Substituting (4.2) into (4.3) and then into (3.6), we obtain the equation 

4~ 
{4.4) 
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Analogously, for the other  slip plane 

cos 20 (0v t 0v,~ --L sin 20 (Or., Ovl] (J~ + a~ (4.5) 2 ~o~ - ~ )  - - ~  ~ + o~,~ + 9. = ~ s ( o o )  + ~ 4~, 

In an elastoplast ic  body the e lements  deform both under the effect of the s t r e s se s  a~x n and under the effect of 
m o m e n t s .  The last  c i rcumstance  allows us::to close the sys tem relat ive to all var iables ,  including the mo-  
ments .  

:: F r o m  the above, mechanism of deformat ion it follows that the fo r ce s  between the elements  are t r a n s -  
.... mi t red v ia  : the:s t resses  distr ibuted over  their  sides.:: Therefore ,  the m o m e n t s  p~ 1 :and ~2 can ar ise  only as a 
resu l t  of nonuniformity of such a distribution. In the given case the s t r e ss  distribution over  the side of the 
element can acceptably be assumed to be l inear.  The linear d iagram is represented  as a superposit ion of 
two d iagrams:  a constant one, which gives the same force along the side of the element as the Original dia-  
g ram but does not give any moment,  and a l inear one, which as a sum does not give any force but does give a 
moment .  We denote the maximum s t r e s s  on the side X 2 of the element corresponding to ttie second diagram by 
Z~I -Then  

It~ = E~laJ~s/6. 

Analogously, for the side ~1 

~0 

The nonuniform s t r e s s e s  acting on the side 2~2 of the element cause not only an extension of the element, 
which is taken into account by the f i rs t  equation of (4.1), but also a rotat ion of this side through an angle a~i. 
By means of the usual  re la t ion we can connect the variat ion of ~~ 1 along X 1 (12~ I is smooth along X 1) with ~ I :  

o~ ~ m~~ 
,,--7-~ = ~ '  (4.6) 

where E is Young's modulus.  

Analogously, along ~2 

t 0~2  12~02 
Q.. o~2 ~ E (Qlh~) 2 " (4.7) 

If we follow the ideas of the moment theory  of elast ici ty,  then we have to put 9.o I =~2~ 2 [8] (in the given 
0 _ 0 case it is unimportant  whether the variable 9.11 -~22 iS independent or  is determined,  as in [8], by the rot  of 

tile displacement  field) and obtain the closing equation for the moments  by c ross  differentiation of (4.6) and 
(4.7). However, the mechanism of deformation adopted above leads to the necess i ty  of additionally introducing 
three kinematic var iables  at the point )~l, k2: ~2, ~1 ,  and ~2~ At the same t ime, a pr ior i  we have no just i f ica-  
tion for the assumption that the variables  ~ 0  and ~~ 2 are connected with one another and with the variable 12. 
Therefore ,  the two equations (4.6) and (4.7) introduce the two new unknowns ~~ 1 and ~~ 2 into the sys tem of equa- 
tions and do not allow us to d i rec t ly  close the sys tem relat ive to the moments.  

The closing equations can be obtained in the following manner .  By W we denote the part  of the elastic 
energy which is s tored in the region D of the e las toplas t ic  body as resul t  of deformation of elements under 
effect of the moments  p~ 1 and 0 //22- It can be shown that 

w : m i' [ (,,0)2 ] 
E b [(a'~lvr)" ' (a'll~)2J 

(4.8) 

We assume that out of all possible moment  distr ibutions satisfying the equations of equilibrium and 
boundary conditions the one t h a t m a k e s  the  potent ia l  energy W~a minimum is rea l ized .  The :minimum of the 
ffmctional (4.8) under~ the~ condition (3.9) is : r ea l i zed  if the moments  sa t i s fy  the equation 

a 0 
0 2P22 0 a l l o t  

~ = oX2 (ad2e)"" (4.9) 
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In a l l  c a s e s  c o n s i d e r e d  above  the  func t ions  l~ and l 2 f r o m  (2.2) can  be i n t e r p r e t e d  as  n o n h o m o g e n e o u s  
c h a r a c t e r i s t i c s  o f  the  m a t e r i a l  hav ing  the d i m e n s i o n  of  l ength .  I f  the  g r i d  of  s l i p  l i n e s  is  r e g u l a r  and c o n s i s t s  
of  s t r a i g h t  l i n e s  (~ - / ~  = / ) ,  then the  n o n h o m o g e n e o u s  c h a r a c t e r i s t i c s  r e d u c e  to a s i n g l e  c o n s t a n t  which  is  c o n -  
t a i n e d  in the  e q u a t i o n s  as  a m a t e r i a l  c o n s t a n t  hav ing  the  d i m e n s i o n  of  length .  The  c o n s t a n t  o f  the  m o m e n t  
t h e o r y  o f  e l a s t i c i t y  (with a c c u r a c y  up to an u n i m p o r t a n t  m u l t i p l i e r  which  is i n t r o d u c e d  for  the  s ake  of  c o n v e n -  
ience:) c o i n c i d e s  w i t h  l ,  t h e  p a r a m e t e r  o f  d e n s e n e s s  of  the  g r i d  of  s l i p  l i n e s .  In t h i s  c a s e  Eq.  (4.9) is  t r a n s -  
f o r m e d  into the  c o r r e s p o n d i n g  e q u a t i o n  o f  the  m o m e n t : t h e o r y  o f  e l a s t i c i t y :  a.,ul~l/t~x 2 -a/x ~ / ~ x  I [8]. 

The  e q u a t i o n s  of  e q u i l i b r i u m  t o g e t h e r : w i t h  Eqs .  :(4.1), (4.4) - ( 4 . 7 ) ,  and (4.9) f o r m  :a c l o s e d  s y s t e m : r e l a -  
t i ve  to 

.0,, o.?o, ~ 0 ~ . -  012, 21, Wl, W.,. -Q, fl71, .Qo. 22, illl~ lu220. 

In C a r t e s i a n  c o o r d i n a t e s  the  s y s t e m  is  t r a n s f o r m e d  into 

01~11 i ~ 2  l" f)IT I o 0(12  ..~ 0~. + ~ - F ' u  ,x[ F ~ + X . . = 0 ,  

"2 \~-~x 1 - -  ~x-~x~) 2 \Ux I Ox.>: + " 2 " \ ~  -!- o.--r2/ := 

, -2 , ,g ,+o~ , [~,,-...,> 0 ,2 ' -  ] 
- 2p. 2" } 2t i .j -" sin 20 -~ '~ cos 20 

.~'""~ .,s=,o(or. ~<,,1, ,__(<,,,, <~".,t 
7 t-g-Z,~, o.~.>.l -;- T \o.,.--~ + ~.,:s -~- ~ t<m -!- ~ s  = 

]--2vm,-.;-%-. I [zii--aO.~sin20 ~ cos20] 
-- 2t~7- 2 "P L " ":7' ' 

cos 20 {,h,, ,h'. t s i i i 2 0 [ : h ' . ,  ;),', . . . . .  
�9 - -  ~ "" : tit cos 20 - t - - --~---p sill 20 -i- 

t [ o , ,  - -  ~ .... o,~ .-~ o..,, %, - -  -,~] 
} / : : S  2 " ' cos20  :- _ sin 2 0 - -  

r o,,..,) sin:]O"O.~ "'"'1 o ~176176 20 ~  
2 \,.,., - <-TZ~.i -!- "_, ( . ~  + ~:+ . .  ~ cos ,~,~ ~- 

i - -  012] i S [ o l , - - %  20 ol.. i-0~, 20 a~ - I - ~ -  c 2 " cos 4 ,, sin : ,,. , 

cos 20 \0-77~ - -  ~x.~/-i- sin 20 (o--~r~ -r- ~ Ox~] -i- - . . . .  0. 

(4.10) 

( F o r  the  s ake  of  b r e v i t y  of  r e p r e s e n t a t i o n ,  the  e q u a t i o n s  for  the  m o m e n t s  in C a r t e s i a n  c o o r d i n a t e s  a r e  not 

w r i t t e n  out .)  

L e t  crl02 <k  and a~l <k.  Consequen t ly ,  t h e r e  is  no l o c a l i z e d  s t r a i n  and S(a~2) - S ( a ~  )-=0, f~ =0.  In th i s  
c a s e  the  ang le  0 is  e l i m i n a t e d  f r o m  the s y s t e m  (4.10) and the s y s t e m  r e d u c e s  to the  equa t ions  of  the  t h e o r y  of  
e l a s t i c i t y .  Hence  an e l a s t i c  m e d i u m  can  be def ined  as  a m e d i u m  in which  the cond i t ion  of  con t inu i ty  of  the  
n o r m a l  c o m p o n e n t  of  d i s p l a c e m e n t  (4.1) is  fu l f i l l ed  fo r  a l l  p o s s i b l e  d i r e c t i o n s  of  ~'i and ?'2. 

We  w r i t e  the  s y s t e m  (4.10) in t e r m s  o f  i n c r e m e n t s :  

Oho'l~: 0howl 0Act2 rgAo..,.,. ~= O, ,.~ + ~ = 0 ,  ~ +  ~.. 

- r  2 0  (<~ ~",1 �88 [(Ao.-  A~) s~. 20-  (A.. + A~,) ~os sin 20\  ox, Ox. / \ o-x-~'.~ -~- -g~-2 ! = 201; 

ahr'l l -  Oh!L" : :  I - -  2v (AO. n .4._ AO'~e). 
dx t O.r. z 2~t 

cg&v t COS 20 \ 

(4.11) 
. , ~  [ r )Ac, ,  ~ A v  I ~ 0Ar'~/ -I- sm zv ~-g-xxt- -}- = p" (J,O.,i - -  hOj2) ~- Pl [(h~n - -  A~e) cos 20 -i- (AoL~ -i-, A~I)  sin 20], 

c9x2 ] , i~x2 ] - _ 

c o s .  \ Ox~ ~ ] ~- sin 20 \ ox: ox,~ / :- - "" 

w h e r e  

s ' ( . ~  ,'- , a' (~ , )  s' (00) 
2 p l  s ' ( : 2 )  ~_ T ;  2p~ = - 
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We cons ider  the p rob lem of the coeff icients  b 1 and b 2 which f igure in Eqs. (3.7), i .e.,  the p rob lem of func- 
tioning of s l ip l ines f rom different  fami l ies .  Le t  (kl, k~) be the coordinates  of a ce r ta in  initial  e lement ,  while 
(k 1 + Akl, X2), (k 1, k 2 + A~2), and (?,1 +Aki,  k2 +AA. 2) a r e  the coordinates  of the e lements  border ing  on the initial 
e l emen t s .  The compat ib i l i ty  conditions of s t r a in  of the e lements  (kl, X2) , (kI§ k2), and (kl, k2+AX 2) lead to 
Eqs.  (3.1) or  (4.1). At the s ame  t ime,  the condition of compat ib i l i ty  of s t ra in  of the e lements  (kl, X 2) and (k~ + 
Akl, )t 2 +Ak2) mus t  be sa t is f ied ,  which leads to the fact  that  at any specif ied momen t  of t ime  t, bl(t)b~(t)=0, 
i .e . ,  in the med ium being cons idered  only a l te rnat ing  functioning of slip l ines f rom different  fami l ies  (turbulent 
p las t ic  flow [9]) is poss ib le .  The re fo re ,  t he  inc rements  of all  sought va r i ab l e s  consis t  of two par t s :  one par t  
(with the index " -" )  sa t i s f i e s  Eqs.  (4.11) tin which we have put b 1 =0),while  the other  (with the index "+") s a t -  
isf ies  the s ame  equations but with b 2 =0. Since both s y s t e m s  are  l inear ,  by adding the cor responding  equations 
r e l a t ive  to inc remen t s  with the indices "+" and " - "  we obtain as the sum the same  s y s t e m  (4.11), in which A = 
[(A-~2)-CA+ ~2)][(A-fl) + (A+ ~2)]. Here  it  is n e c e s s a r y  to take into account the fac t  that  S'(~2),  S'(a~l), ands con-  
sequently,  Pl, P2 depend on the sign of the i n c r e m e n t s  A~2 and A~I .  

t f  the quantity A is known (for example ,  f rom the s y m m e t r y  conditions A =0 or  f rom the boundary condi- 
t ions,  as in the p rob lem of the die, A =1, and so forth), then we can at once solve the sy s t em for the increments  
with the index "+" or  " - " .  Here  the quest ion a r i s e s  as to during which t ime  in terva ls  the boundary conditions 
are  sa t i s f ied  as a r e su l t  of slip along one family  and as a r e su l t  of slip along the other  family .  In each p rob-  
lem this question is r e so lved  f rom additional cons idera t ions ,  taking into account the actual loading conditions 
of the m a t e r i a l .  

We cons ider  the p rob lem concerned with the type of the s y s t e m  (4.11). F r o m  the las t  five equations we 
exp re s s  AC~km in t e r m s  of Av 1 andAv 2. Then, subst i tut ing the expres s ions  for A~km into the equations of equi l -  
ibr ium,  we obtain two quas i l inear  equations of the second o rder  re la t ive  to Av I and AV 2. By u we denote the 
tangent  of the angle of inclination of the c h a r a c t e r i s t i c  to the Ox I axis in the local  coordinates  0 =7r/4. Then 

, /L  ( ,_ _+ Vi,  z ( (4.12) 
x = • ( i  -- v) ( h  ~ ~ )  - '  

where  

i Pi -}" p~fA - -  tI4F.  

~, = 2~ p~--_p~_ p,14--------~' 

t pz/A+ p2 

The type of the s y s t e m  (4.1.1) is de te rmined  by the signs of the express ions  under  the square  root  sign 
in re la t ion  (4.12). 

The exp re s s ion  (4.12) shows that the type of the s y s t e m  (4.11) depends on the de r iva t ives  of the functions 
S. We cons ider  the mechan ica l  s ignif icance of this re la t ion  when cry2 ----a~ 1. Here  we have the conditions 

~ _ t l p l .  ~i -~[, ~o=0, A=----p~ (4.13) 

The re la t ion  (4.12) [with (4.13) taken into account] shows that  the sy s t em (4.11) is of el l iptic type in the 
case  where  the m a t e r i a l  hardens  (~1 > 0), and is of hyperbol ic  type in the case  of an ideal flow of the m a t e r i a l  
(~1 = 0). If  the m a t e r i a l  softens and its softening is not too intense [--1/(t - -  2v) ~ 1  < 0], then the sy s t em also 
is of hyperbol ic  type.  If, however ,  the softening of the m a t e r i a l  becomes  sufficiently intense [--  co <: ~-1 < - -  i/ 
(l - -  2v)], then the type of the s y s t e m  changes to e l l ipt ic .  

This resu l t ,  which is paradoxica l  at f i r s t  glance,  can be c lar i f ied using the following example .  Let  the 
s t r ip  AIA2A3A 4 be s t re tched  in the x 1 d i rec t ion (Fig. 5). We assume that  on the boundary and within the region 
of deformat ion  crl2 =or21 =cr22 = 0 and O= O. F r o m  Eqs.  (4.11) we can find the connection of the increment  in the 
length of the s t r ip  with the tens i le  s t r e s s e s :  

Aoll -- - ~ .  (4.14) 
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Fig. 5 

If  the mate r ia l  hardens,  then the signs of AV 1 and Affli are  the same,  i.e., an increase  or  decrease  in the ten-  
sile force leads to an increase  or  dec rease  in the length of the strip.  Now let the increase  in the localized 
shear  on the slip plane lead to a decrease  in the shear  s t r e s se s :  the mate r ia l  softens. On the one hand, the 
increase  in the localized shear  leads to an increase  in the length of the str ip.  On the other  hand, the decrease  
in the shear  s t r e s s e s  leads to elast ic  unloading of the elements ,  which gives r i se  to a decrease  in the length 
of the s t r ip .  

For  ~1 > - 1 / ( 1  - 2v) the f i rs t  factor  prevai ls  over  the second, and for a decreas ing  external  load an o v e r -  
all elongation of the s t r ip  takes place: The sys tem (4.11) is of hyperbolic  type. If, however,  ~i <-  1/(1 - 2v), 
then the second factor  will be the dominant one: For  a decreas ing  tensile force and increas ing localized shear  
the overal l  length of the s t r ip  will dec rease  as a resu l t  of the elast ic  compress ion  of the elements ,  i.e.,  in 
outward appearance the mate r ia l  behaves as a hardening mater ia l ,  and the type of the sys tem is changed to 
elliptical.  If  ~l =-1 / (1  - 2v), then the tensile force dec reases  for a constant length of the str ip.  Under these 
conditions the sys tem is energet ica l ly  isolated and a t ransi t ion of the s tored energy into work performed on 
the slip planes takes place within it. 

We consider  yet  another c i rcumstance .  Let the tensile s t r e s s  (Tll increase  monotonically f rom zero and 
then, if there  is a falling branch, let it dec rease .  Then on the r i s ing branch the function S(all/2) is s ingle-  
valued and, consequently,  P2 =0. F rom Eqs. (4.11) it follows that in this case A~2 =0, i.e., the localized shears  
on both families of slip lines are the same and the lines function symmet r i ca l ly  (see Fig. 5a). If the mater ia l  
begins to soften, then the function S(all/2) becomes non-single-valued,  and the possibil i ty of the other mode of 
deformation appears ,  when p~ ~0 and A~ 30 (see Fig. 5b). This signifies that the decrease  of the shear  s t r e s se s  
on one of the planes takes place as a resul t  of an increase  in the shear ,  while on the other  plate it occurs  as a 
resu l t  of unloading. If we take into account the a l ternate  c h a r a c t e r  of the functioning of the slip lines, then 
we can draw the conclusion that on the falling branch the second mode of deformation is being real ized.  With- 
out dwelling on problems of the genera l  formulat ion of boundary-value p rob lems  and of existence,  uniqueness,  
and stabil i ty of the solutions (4.10), we note that we can expect nonuniqueness of solution on the falling branch.  
At the same t ime,  some of the solutions will be unstable.  A stabil i ty analysis  provides  a natural  c r i te r ion  of 

choice of the solution. 

It can be shown that in the case of free surfaces  AIA 4 and A2A 3 the solution (4.14) is unstable and non- 
unique. Since the role of this solution is i l lustrat ive,  we assume that kinematic constraints ,  which resul t  in 
dis turbances  leading to instability, are  specified on the boundaries A1A 4 and A2A 3. The solution (4.14) points 
to yet another pecul iar i ty  inherent to deformation of elastoplast ic  hardening mate r ia l s .  F rom (4.14) it follows 
that the "tensile f o r c e - e l o n g a t i o n  of s t r ip" d iagram can have the form depicted in Fig. 6. We assume that the 
loading takes place with a controlled monotonically increas ing elongation. Then for an elongation equal to v~ 
there  occurs  in the mate r ia l  a noncontrolled l iberation of a part  of the elast ic  potential energy, which c o r r e -  
sponds to the t ransi t ion f rom the point A 1 to A 2 and then to A 3. Here,  in the transi t ion f rom A 1 to A2, the l iber-  
ated potential energy is ent i re ly dissipated on the slip lines, while in the transi t ion f rom A 2 to A 3 only a par t  

o f  the energy is dissipated; the r e s t  is t r ans fo rmed  into the kinetic energy of the elements.  If  such a "dis-  
charge"  does not des t roy  the specimen,  then its subsequent deformation will take place along the branch A3A 4. 

We consider  the ax i symmetr ic  solution of the problem of the s t r e s s -  s t ra in  state of the mate r ia l  around 
a c i rcu la r  hole. We introduce the sys tem of polar coordinates (r, fl) and assume that ~flr = ~ r -  =0 on the bound 
ary  and inside the region of deformation.  Hence 0 -= f~ and the slip lines will be logari thmic ~pirals. Let the 
elements  be regular  and their  dimensions not depend on fl: fl(kl) =f2(kz) =1, l I =/2 = e r .  We also assume that 
mass  forces  are absent. Then the sys tem (4.10) is t r ans fo rmed  into 
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Ov r v r i - -  2v. __ o%, , % , -  %~ 0, -E § -7" - - f ~  ~(~-{- ~ )  0r' T r = = ' 

OVr V r 2 G -~ 
~r r - er 2~t ' 

w h e r e  

= l z  = _ 2 

E x p r e s s i n g  the h a l f - d i f f e r e n c e  of  the  p r i n c i p a l  s t r e s s e s  in t e r m s  of  the  r a d i a l  d i s p l a c e m e n t  f r o m  the 
f i r s t  two e q u a t i o n s  and then  u s i n g  the  l a s t  equa t ion ,  we ob t a in  the  g e n e r a l  so lu t i on  in the  f o r m  

1 - - m , { V . ,  _ _ ~ ) ,  a n d  w h e r e  w = - - ~ - -  \ - ~  

v r = g r  d r - } - C l r ,  or ,=l :~-]--Z~. \ -g-r-r  + - -  7 , 

= ( a , ) -  s 

s a t i s f i e s  the  f ina l  r e l a t i o n  

2~G ( j  ~- 2er (i  - -  v) �9 = eC~ (1 -- 2~) 
r 

(4.15) 

(4.16) 

(C, and C2 a r e  the  i n t e g r a t i o n  c o n s t a n t s ) .  On the  r i s i n g  b r a n c h  the  funct ion S is s i n g l e - v a l u e d  and G ~ S ,  w=0 ,  
i . e . ,  on the  r i s i n g  b r a n c h  the  s l i p  l i n e s  f r o m  the  d i f f e r e n t  f a m i l i e s  h m c t i o n  i d e n t i c a l l y .  On the  f a l l ing  b r a n c h  
the  funct ion  S i s  n o n - s i n g l e - v a l u e d , ~  s 0 ,  and l o c a l i z e d  s h e a r  (s l ip)  con t inues  only  a long one of  the  f a m i l i e s  of  
s l i p  l i n e s .  

I f  G(~-) is  i n d e t e r m i n a t e  for  a c e r t a i n  T = k  ( idea l  f low),  then  Eq.  (4.16) is  r e p l a c e d  by the  equa t ion  ~- =k  
and (4.15) is  t r a n s f o r m e d  into the u s u a l  s o l u t i o n  of  the  t h e o r y  of  i d e a l  p l a s t i c i t y .  F o r  G(~') ---0 (no l o c a l  s t r a i n ,  
e l a s t i c i t y ) ,  Eq.  (4.15) is  t r a n s f o r m e d  into the  s o l u t i o n  of the  t h e o r y  of  e l a s t i c i t y .  

In the  p r e s e n c e  of  a f a l l i ng  p a r t  of  the  G(v) d i a g r a m  the  s o l u t i o n  (4.16) can  be nonunique,  po in t ing  to the  
p o s s i b i l i t y  of  a n o n c o n t r o l l e d  l i b e r a t i o n  of  the  s t o r e d  e l a s t i c  e n e r g y  in a c e r t a i n  r e g i o n  of  the  m a t e r i a l  be ing  
d e f o r m e d .  

Thus ,  we have  c o n s i d e r e d  the  d e f o r m a t i o n  of  a m a t e r i a l  d iv ide d  into e l e m e n t s  by a d i s c r e t e  g r i d  of s l ip  
l i n e s .  The  d i s t a n c e s  be tween  the s l i p  l i n e s  w e r e  a s s u m e d  to be s u f f i c i e n t l y  s m a l l ,  so tha t  the  t r a n s i t i o n  into 
d i f f e r e n t i a l  equa t i ons  d id  not  i n c u r  l a r g e  e r r o r s .  F o r  a n u m e r i c a l  so lu t ion  of  the  p r o b l e m s  an i n v e r s e  t r a n s -  
i t ion  into a " d i s c r e t e "  m o d e l  is  r e q u i r e d .  I t  is  obv ious  tha t  in the  c a s e  of  f o r m u l a t i o n  of  p r o b l e m s  fo r  n u m e r -  
i c a l  c a l c u l a t i o n  t h e r e  is  no need  to m a k e  two t r a n s i t i o n s :  T h e p r o b l e m  can  be  p o s e d  a t  once  f o r  a d i s c r e t e  g r i d  
of  s l i p  l i n e s .  H e r e  two c i r c u m s t a n c e s  can be u sed :  for  an e l a s t i c  body we can  t a k e  any conven ien t  g r i d  of  
s l ip  l i n e s  of  a r b i t r a r y  o r i e n t a t i o n  and d e n s e n e s s ,  whi le  for  an i d e a l l y  p l a s t i c  body we can  t a k e  a g r i d  of  any 
d e n s e n e s s .  

The f i r s t  c i r c u m s t a n c e  a l lows  us  to  c o n s i d e r  e l a s t o p l a s t i c  p r o b l e m s ,  when the  d i s t a n c e  be tween  the  
a c t u a l  s l i p  l i n e s  (on which  the  s l i p  is  n o n z e r o )  is  c o m p a r a b l e  wi th  the  c h a r a c t e r i s t i c  d i m e n s i o n  of  the  body 
b e i n g  d e f o r m e d .  A b o v e ,  the  d e t e r m i n i n g  r e l a t i o n s  for  the  s t r e s s e s - s t r a i n s  of  the  e l e m e n t s  a n d t h e  s t r e s s e s -  
s l i p s  be tween  the e l e m e n t s  w e r e  w r i t t e n  out  s e p a r a t e l y .  The f i r s t  r e l a t i o n s  w e r e  a s s u m e d  to be p u r e l y  e l a s -  
t i c  o r  r i g i d ,  whi l e  the  s e c o n d  r e l a t i o n s  w e r e  a s s u m e d  to be p u r e l y  p l a s t i c .  T h e s e  r e s t r i c t i o n s  a r e  not  of  a 
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major  cha rac te r  and admit a general izat ion of  relat ions both of the f i rs t  and of the second types.  In par t icular ,  
we can take into account creep,  nonorthogonality of the slip lines, dilatational effects [10], and effects of in- 
t e rna l  fr ict ion which have importance for soils and rocks .  
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A Z I M U T H A L  A S Y M M E T R Y  O F  T H E  B I L L E T  

M. E .  Z h a b o t i n s k i i  a n d  A.  V .  F o i g e l '  

S M A L L  

UDC 532.5:535.8:666.189.2 

One possible type of fibrous lightguide is a t r ansparen t  microcap i l l a ry .  Small losses  with the propaga-  
tion of light along a lightguide are possible if its t r ansve r se  c ross  section is sufficiently close to a concentr ic  
round r ing and is constant  over  the length of a fiber. F rom a physical  point of view, the process  of the fo rm-  
ing of a lightguide can be represen ted  as the flow of an incompressible  Newtonian liquid with ava r i ab l ev i s cos t t y  
(some po lymers  are not Newtonian liquids and are  therefore  not discussed here).  

Art ic le  [1] d i scusses  the pulling of a microcap i l l a ry  f rom a billet, i.e., a solid hollow cylinder of given 
dimensions.  The billet and all the external  conditions under which the pulling was done were assumed to be 
ax i symmetr ic ,  as a resu l t  of which the mic rocap i l l a ry  pulled was also ax isymmetr ic  with a round c ross  sec-  
tion. In [1] equations for the form of the jet (the t ransi t ion from the billet to the microcapil lary} were ob- 
tained and the dependence of the dimensions of the mic rocap i l l a ry  on the pa rame te r s  of the p rocess  was found. 
We discuss  below the pulling of  a mierooapiUary  from a billet, taking account of the smal l  real  nonaxisymmet-  
r i c  cha rac te r  of the lat ter ;  the degree of nonax isymmet ry  of the microcap i l l a ry  is found and its dependence 
on the pa rame te r s  of  the process  is investigated. 

w I n a l l a s p e c t s ,  except  for the assumption of the nonaxisymmetry  of the process ,  the statement of the 
problem is the same as in [1]: the t empera tu re  distribution is assumed to be given; in all c ross  sections,  the 
thickness of the wall of the billet and the jet is assumed to be smal l  in compar ison  with its radius;  by virtue 
of the thinness of the wall, the t empera tu re  is assumed to be identical at all points of the t r ansve r se  c ross  s ec -  
tion of the jet and to depend only on the longitudinal coordinate z; the viscosi ty  is a known function of the tem-  
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